主动脉瓣狭窄微创腔内治疗专家共识
中华胸心血管外科杂志, 2016,32(9) : 513-521. DOI: 10.3760/cma.j.issn.1001-4497.2016.09.001

近年来,主动脉瓣狭窄微创腔内治疗技术,即经导管主动脉瓣置换术的发展,丰富了主动脉瓣疾病的治疗方法,使得外科手术禁忌的退行性主动脉瓣狭窄患者有望得到微创、安全的救治。我们在国内主动脉瓣狭窄微创腔内治疗经验的基础上,结合国际经验初步提出关于主动脉瓣狭窄微创腔内治疗的基本原则与应用要点,以期提高我国主动脉瓣狭窄微创腔内治疗的规范化程度。

1.主动脉瓣狭窄的流行病学与病程特点
1.1 主动脉瓣狭窄的人群发病率

根据现有流行病学资料,退行性主动脉瓣狭窄,在60~69岁人群中发病率为1.3%,70~79岁人群发病率为3.9%,80~89岁人群发病率为9.8%[1]。其中,约20%~40%的患者因外科手术高危,须行微创腔内治疗[2]。先天性主动脉瓣畸形的人群发病率为0.5%~2.0%,其中75%的患者需要主动脉瓣置换手术治疗[3,4]。先天性主动脉瓣患者占全部主动脉瓣狭窄手术患者的54%,其中先天性二叶瓣狭窄约占49%,先天性单叶瓣约占4%[5]。但先天性主动脉瓣狭窄患者通常在65岁以前完成主动脉瓣置换,先天性主动脉瓣狭窄仅占全部主动脉瓣微创治疗患者的15%~33%。

1.2 主动脉瓣狭窄的病程进展

主动脉瓣狭窄早期进展隐匿,常无明显临床症状。退行性主动脉瓣狭窄,平均跨瓣压每年升高3~7 mmHg(1 mmHg=0.133 kPa),有效瓣口面积每年减少0.1 cm2,最大射血速度每年升高0.3 m/s[6],无症状期可长达7~10年[7]。即使患者出现重度主动脉瓣狭窄,也可能不表现任何临床症状。但重度主动脉瓣狭窄患者,无论是否出现症状,预后均较差。无症状重度主动脉瓣狭窄患者2年生存率56%~63%,5年生存率25%~33%[6,8]。症状性主动脉瓣狭窄患者,1年病死率32%~51%[9,10]。因此,所有主动脉瓣狭窄患者均需密切随访。

2.主动脉瓣狭窄的诊断
2.1 症状

常见主要症状包括:运动耐量下降、心衰发作、晕厥、心绞痛[11]。临床症状的出现,通常提示重度主动脉瓣狭窄。

2.2 影像学检查

主动脉瓣狭窄的诊断必须通过影像学检查确立。推荐采用经胸壁超声心动图(transthoracic echocardiography,TTE)作为主动脉瓣狭窄诊断的手段[7,12]。对于确诊首次主动脉瓣狭窄或疾病显著进展(首次出现临床症状、出现新发症状)的患者,应行经食管超声心动图(transesophageal echocardiography,TEE)检查,准确测量患者的主动脉瓣钙化程度、有效瓣口面积、主动脉瓣平均跨瓣压、主动脉瓣口最大射血速度、左心室收缩功能、左心室流出道形态、其它瓣膜情况等[13,14]。计算机断层扫描(computed tomography,CT)及核磁共振成像主要用于术前评估与测量,不作为疾病诊断的首选检查[15,16,17,18]

2.3 主动脉瓣狭窄的程度

根据超声诊断,主动脉瓣狭窄可分为:轻度、中度、重度及极重度。

轻度:(1)轻至中度的主动脉瓣叶钙化,(2)主动脉最大射血速度2.0~2.9 m/s或平均跨瓣压<20 mmHg;中度:(1)轻至中度的主动脉瓣叶钙化,(2)主动脉最大射血速度3.0~3.9 m/s或平均跨瓣压20~39 mmHg;重度:(1)重度的主动脉瓣叶钙化,(2)主动脉最大射血速度≥4 m/s或平均跨瓣压≥40 mmHg,(3)主动脉瓣口面积≤1 cm2;极重度:主动脉最大射血速度≥5 m/s或平均跨瓣压≥60 mmHg。

主动脉瓣重度狭窄是外科开胸治疗的主要时机,也是微创腔内治疗的首要指征[6,19]。症状性中度主动脉瓣狭窄的患者,也应当考虑积极手术治疗[20,21,22]。如果存在较高手术风险,应考虑微创腔内治疗[9,23]。对于极重度主动脉瓣狭窄患者,常伴左心室功能严重下降,提示手术后预后不良[24,25]

2.4 手术危险分级

根据STS评分(STS Adult Cardiac Surgery Risk Calculator)、器官损害、虚弱评分及手术难度,可将主动脉瓣狭窄患者分为低危、中危、高危、极高危4组[26,27,28,29,30]

低危组,指STS评分<4%,不伴器官损害;

中危组,指STS评分4%~8%,或伴个器官损害,或虚弱评分1分;

高危组,指STS评分8%~15%,或伴2个器官损害,或虚弱评分≥2分,或手术难度较大;

极高危组,指STS评分>15%,或伴2个以上器官损害,或1年病死率大于50%,或手术难度极大、存在外科手术禁忌。

对于高危组或存在开胸外科手术禁忌的主动脉瓣狭窄患者,倾向于主动脉瓣狭窄微创治疗。低危及中危组重度主动脉瓣狭窄患者,虽然以证明短期疗效与外科瓣膜置换相当,但由于远期疗效暂不明确,暂不推荐采用微创腔内治疗[31,32]。极高危组患者中,STS评分>15%的患者通常伴严重的心功能不全及器官损害,微创腔内治疗通常不能改善患者预后,暂不作推荐[23,33]。对于高危组重度主动脉瓣狭窄患者,主动脉瓣狭窄微创腔内治疗疗效明显高于保守治疗[9]。与外科开胸行主动脉瓣置换相比,微创腔内治疗组30天病死率明显低于开胸外科手术[23,34]

3.主动脉瓣狭窄微创腔内治疗的适应证及禁忌证
3.1 适应证

存在开胸外科主动脉瓣置换手术禁忌(术后30天病死率>50%)或手术高危(STS评分8%~15%,或伴2个器官损害,或虚弱评分≥2分,或手术难度较大)的重度主动脉瓣狭窄患者[9,23,35,36]

3.2 拓展适应证

对于有经验的中心,可适当拓展适应证。但对此类患者尚缺乏长期疗效结。包括:外科手术高危的中度主动脉瓣狭窄患者、高危组主动脉瓣置换术后生物瓣膜退化患者、单纯性主动脉瓣反流、先天性二叶瓣狭窄。

3.3 禁忌证

急性心肌梗死,严重冠状动脉病变,主动脉瓣环过大(>31 mm)或过小(<18 mm),左心室射血分数<0.2,联合瓣膜病变,术后预期生存期小于12个月,6个月内短暂性脑缺血发作史,STS评分>15%的极高危组主动脉瓣狭窄患者、严重主动脉瓣反流、严重肾功能不全为相对禁忌证[30,36]

4.主动脉瓣狭窄微创腔内治疗术前评估

术前一般评估与其他手术相似,应评估患者对于治疗创伤的耐受能力,判断患者是否可以耐受麻醉、失血等手术打击,并评估可能发生的术后并发症。

4.1 心脏功能评估

术前的心功能评估有助于再次判断患者的疾病分期,排除主动脉瓣微创腔内治疗的禁忌证及判断患者预后。心脏功能评估主要采用TTE/TEE。TEE较TTE可消除阴影影响,获得更为准确的数据。

心脏结构评估:主要包括各房室结构、室间隔厚度,排除肥厚性心肌病、左心室流出道狭窄、严重先天性心脏病等治疗发高危因素。

血流动力学评估:包括各个瓣膜平均跨瓣压、跨瓣膜分流、主动脉瓣最大射血速度、主动脉瓣平均射血速度、主动脉瓣口面积,用以确定患者疾病程度,排除联合瓣膜病等禁忌证。左心室射血分数,用于评估患者心脏功能储备。

4.2 主动脉瓣复合体形态评估

通过CT增强扫描进行评估,层厚应小于1 mm,心电门控装置可以大幅提高图像的清晰度并减少主动脉根部运动伪影[37,38]。主动脉瓣环直径,指主动脉瓣附着缘最低点所形成平面的平均直径,代表主动脉瓣支架锚定区的平均直径,也是主动脉瓣支架的主要锚定位置,可采用面积法、周长法、平均直径法,通过CT影像三维重建测得[39]。移植物瓣膜直径大于瓣环直径5%~15%,有效瓣口面积应大于主动脉瓣环面积15%~25%,过大或过小均可能带来瓣周漏与术后移植物移位的发生及主动脉瓣环破裂[40,41]。冠状动脉开口高度,指冠状动脉开口的下缘至对应冠状动脉窦附着缘最低点的距离,用于评估发生冠状动脉遮蔽的风险。此外需要仔细判断瓣膜的数量、融合方向、瓣膜长度和钙化程度,评估支架置入后瓣膜挤压方向、对冠状动脉的可能影响及瓣周反流的发生。对于冠状动脉遮蔽风险较大的患者,如冠状动脉开口低于1.1 cm、瓣膜游离缘钙化严重、冠状动脉窦高度与主动脉瓣叶长度比值小于1,推荐采用自膨式主动脉瓣膜[42,43]。窦管结合部直径>45 mm的患者,不推荐采用自膨式支架。对于附着缘严重钙化或二叶瓣患者,球扩式主动脉瓣可有效降低瓣周漏发生。

4.3 主动脉、导入动脉评估

通过全主动脉CTA,评估主动脉与导入动脉情况。扫描范围应当能够清晰显示双侧椎动脉、颈内动脉至双侧股浅动脉的全部区域。对于主动脉应当首先评估扭曲程度、斑块分布,排除主动脉瘤、主动脉夹层、主动脉溃疡,并测量主动脉弓成角、瓣膜底部平面角度,便于术中调整C臂机投射角度[44,45]。股动脉作为主动脉瓣狭窄微创腔内治疗的首选入路。对于股髂动脉条件极差或主动脉扭曲严重(>70°)[46],不适用于股动脉入路的患者,推荐经腹主动脉、颈动脉、锁骨下动脉、心尖入路或主动脉根部入路。

4.4 冠状动脉评估

术前必须进行冠状动脉造影。对伴冠状动脉重度狭窄患者,推荐术前1个月进行腔内治疗,也可在主动脉瓣狭窄微创腔内治疗同期进行[47,48,49]

4.5 心脏传导系统评估

所有患者术前应复查12导联心电图,明确是否存在心律失常。术前左束支传导阻滞及房室传导阻滞患者,术后新发缓慢心律失常风险较高[50,51]

5.主动脉瓣狭窄微创腔内治疗的麻醉选择

推荐在气管插管麻醉下进行,便于TEE操作并提供稳定的操作环境。对于气管插管麻醉高危的患者,也可采用静脉镇静+局部麻醉或单纯局部麻醉方式[52]。必要的术中监测包括:外周动脉压、5导联模拟心电图、中心静脉压。有条件时,应监测患者脑功能情况,预防患者出现隐匿脑梗塞。应当预置除颤电极并随时准备电击除颤。麻醉过程中,应积极处理低血压,推荐维持收缩压不低于120 mmHg,舒张压不低于60 mmHg[53]。术前45 min,应当接受预防性抗生素治疗,预防移植物感染及细菌性心内膜炎。在血管导鞘置入血管前,应给予0.5 mg/kg普通肝素,全身肝素化,维持ACT于250 s~350 s[54]。球囊扩张及移植物导入前,为有效快速起搏、预防恶性心律失常发生,可通过临时起搏器控制心率,尽可能消除房颤、异位起搏,并维持心率于50~70次/min。

6.主动脉瓣狭窄微创腔内治疗的术中操作
6.1 血管腔内通道的建立

股总动脉作为血管通道的首选,也可根据患者具体情况选择建立其他部位的血管通道。治疗中,需要至少建立2处动脉通道(分别用于移植物导入与造影导管导入)、2处深静脉通道(分别用于置入右心起搏电极及术中补液)。

推荐首选股总动脉全穿刺技术完成主动脉瓣微创腔内治疗,可减少术后疼痛与导入动脉相关并发症发生。为便于操作,右侧股总动脉优于左侧。股总动脉严重硬化、导入系统外径大于18 Fr,推荐采用股总动脉解剖暴露血管。如股-髂动脉严重钙化、股髂动脉最小直径小于导入系统外径、主动脉扭曲>70°、主动脉严重钙化/缩窄,应选择其他外周血管通道,如腹主动脉、颈动脉、锁骨下动脉、心尖入路或主动脉根部入路。由于颈动脉、锁骨下动脉入路血管闭合、止血困难,且卒中风险较大,推荐行局部解剖暴露血管[55,56]

6.2 静脉通道的建立与临时起搏电极的置入

推荐于非移植物导入侧股静脉建立深静脉通道并置入右心起搏电极。

6.3 术中影像监测
6.4.1 TEE/TTE

推荐术中全程TEE/TTE监测,以帮助术者定位、辅助术者排除术中即刻并发症。其中TEE主要用于全麻患者,TTE通常用于局麻患者。相比TTE,TEE超声阴影较少,可观察到更好的主动脉瓣环的长轴面。

6.4.2 数字减影血管造影

推荐以6F猪尾巴造影导管放置于主动脉根部或主动脉窦内,用于移植物释放前后的瓣上造影及移植物释放时的实时定位。

6.4 轨道建立的技巧

导丝逆行通过狭窄主动脉瓣是轨道建立的难点。推荐采用左心导管配合直头导丝通过狭窄的主动脉瓣口。机头位置应依据CT主动脉瓣平面测量角度,使射线投射方向与主动脉瓣平面平行,以确保主动脉瓣口位于影像正中位置。技术要领在于,导管支撑于升主动脉大弯侧,弯曲的导管头指向主动脉瓣方向。旋转导管,逐次尝试通过瓣膜。导丝通过瓣膜后,应当尽快跟进导管,避免导丝软头随血流飘动。导管通过瓣膜后,应交换弯头加硬导丝或头端经过弯曲塑形的超硬导丝,并在左心室内成襻,使得导丝获得充足的支撑力。当导丝在心室内运动中,应当以TTE/TEE连续监测二尖瓣功能,并观察导丝、导管的形态,避免导丝、导管钩挂二尖瓣腱索。

6.5 主动脉瓣球囊扩张

移植物释放前需球囊扩张狭窄的主动脉瓣,为主动脉瓣移植物的置入提供导入通道与锚定条件。球囊扩张时均需要行快速起搏。

6.5.1 主动脉瓣球囊扩张的流程

球囊扩张前,应当确认临时起搏器接触、功能良好。当主刀医师明确地发出"起搏"指令,应当迅速将起搏器调至180~220次/min。待收缩压降至70 mmHg,脉压差小于10 mmHg,主刀医师发出"填充"球囊指令,助手快速填充球囊。球囊完全填充的同时,以高压注射器于瓣上行主动脉瓣造影,超声科医师同时以TEE/TTE观察主动脉瓣周反流情况,进一步评估主动脉瓣环大小[57,58]。完成评估后,迅速抽空球囊,起搏心率调至50~70次/min。

6.5.2 主动脉瓣球囊扩张的技巧

球囊直径应小于主动脉瓣环直径2~3 mm,可从较小球囊开始逐次扩张,扩张次数应不多于2次,每次扩张时间小于10 s。最后一次球囊扩张时,若超声心动图见大量造影剂反流,应考虑术前主动脉瓣环测量尺寸过小或主动脉瓣严重钙化,可再次选择主动脉瓣移植物尺寸[59,60]

6.6 主动脉瓣移植物的导入及释放
6.6.1 主动脉瓣移植物输送的技巧

主动脉瓣移植物通过髂动脉弯曲及主动脉弓时,动作应尽量轻柔,减少对管壁摩擦。术者靠近持握传输杆,缓慢推送输送杆,助手辅助固定导丝。对于自膨式主动脉瓣移植物,移植物全程受输送器外鞘保护,可较为柔顺地通过弯曲部位。对于球扩式主动脉瓣移植物,由于移植物裸露于输送系统外,必须在外鞘保护下通过髂动脉弯曲。在通过主动脉弓时,应当尽量通过调节输送器弯曲度,以柔顺通过主动脉弓,减少管壁损伤。

6.6.2 主动脉瓣移植物释放技术要领

不同类型主动脉瓣移植物释放步骤与释放方式均有较大差异。无论任何类型的主动脉瓣,移植物近端均应定位于主动脉瓣环至二尖瓣前瓣附着缘平面,即主动脉瓣环以近6 mm的左心室流出道范围内[61]

自膨式主动脉瓣移植物:以CoreValve及A-Valve为例,瓣底平面应略高于主动脉瓣环平面。若置入过低,可通过助手推顶导丝,轻微抬高移植物高度,并使移植物轻微左移。若置入过高,助手可放松导丝,主刀医师轻推传送杆,可向下推动移植物,并使移植物轻微右移。

球囊扩张式主动脉瓣移植物:以SAPIEN XT/SAPIEN 3为例,移植物1/2至1/3应定位于主动脉瓣环平面以上。冠状动脉闭塞风险较大的患者,可适度低位释放。

6.7 血管闭合、缝合技术

术后造影及TEE/TTE检测完成后,在完全退出导管、导鞘之前,推荐再次行导入动脉造影,判断血管损伤及穿刺位置。移植物导入动脉的血管闭合应当首先进行,完成血管缝合或皮内闭合后,应当反复确认穿刺处皮肤张力及皮肤颜色改变,并加压包扎。

7.并发症处理
7.1 冠状动脉开口遮蔽

冠状动脉开口遮蔽是致命的并发症,发生率约0.66%~1.00%[62,63,64]。若主动脉瓣球囊扩张或移植物释放后,冠状动脉开口被自体主动脉瓣或移植物遮蔽,应即刻采用PCI技术开通冠状动脉,并做好急诊开胸冠状动脉旁路移植术的术前准备。反复腔内开通尝试失败后,应当果断采取中转开胸手术。中转开胸的时机目前尚无定论,但也可首先行股动脉-股静脉体外循环,维持循环稳定。对于术前评估冠状动脉开口遮蔽风险较高的患者,可在冠状动脉内留置导丝、球囊,便于急诊开通冠状动脉。

7.2 主动脉瓣环破裂

主动脉瓣环破裂常见于球扩式主动脉瓣。多发生于球囊扩张后,造成急性心包压塞,是致死性并发症[65],TTE/TEE对主动脉瓣环破裂诊断较为敏感。一旦确诊瓣环破裂,应立即心包穿刺引流、凝胶注射、置入瓣膜或急诊外科开胸手术等措施[66,67,68]

7.3 新发心律失常

房室传导阻滞是最常见的术后新发心律失常。多数患者在术后24 h可自行转复,但也可能在术后30天内发生。推荐对于疑似新发房室传导阻滞的患者,术后继续留置临时性起搏器,至心律转复或置入永久起搏器。术后30天内,应密切监测患者心率情况[69]。少部分患者术后新发房颤,如无禁忌证,应积极华法林抗凝[70]

7.4 瓣周漏与主动脉瓣反流

重度瓣周漏及主动脉瓣反流,是围手术期死亡的重要因素,也影响长期预后。根据瓣周漏的所占主动脉瓣环周长的百分比,可分为轻(小于10%)、中(10%~20%)、重度(大于20%)。轻度瓣周漏通常可自愈。术中发现中重度瓣周漏,可能的原因有,移植物释放不完全、释放位置过低,可再行球囊扩张。若再次球囊扩张后,瓣周漏无明显缓解,应当即刻置入第二个瓣膜。对于某些类型主动脉瓣,移植物置入过低也可通过导丝、抓捕器或输送器,将移植物拉回至理想位置。大量的主动脉瓣反流,通常由于移植瓣膜破损或某个瓣叶贴壁未张开。若确定为移植瓣膜破损,应当即刻置入第二个瓣膜。若瓣叶未张开,可用应用导丝导管技术,选入未张开的瓣膜,向近心端推移,促其张开。

7.5 心功能不全

术后心功能不全的诱因包括全身麻醉、快速起搏、液体输注过量、心脏停搏、冠状动脉缺血等。轻度心功能不全,可通过利尿、强心药物治疗。对于严重心功能不全、循环极度不稳定的患者,可采用心脏辅助装置或体外氧合装置,至患者恢复或实施外科手术。

7.6 出血及导入动脉损伤

术后出血是最常见的并发症及围手术期死亡因素。导入动脉损伤,推荐行血管腔内治疗。对于髂动脉的出血,推荐采用血管内球囊暂时控制出血,并行覆膜支架置入术。移植物导入导致的弓、降主动脉局限性夹层,可在主动脉造影后,暂行保守治疗,严格控制患者血压,并在出院前复查全主动脉CTA。形成升主动脉夹层或主动脉夹层动脉瘤时,推荐行急诊手术治疗。有条件的中心,可以对形态学较为合适的升主动脉夹层行腔内修复。

7.7 脑梗塞

多数患者术后MRI均可发现沉默脑梗塞[71],常规抗血小板治疗后,通常无后遗症。术前3个月阿司匹林与盐酸氯吡格雷双抗血小板,可预防症状性脑梗。血栓保护装置对于斑块及血栓脱落导致的脑梗有一定的预防作用[72]

7.8 感染性心内膜炎

患者术前及术后24 h应给予抗生素以预防感染性心内膜炎。即便如此,术后12个月内发生感染性心内膜炎仍为0.5%~1.0%。发生感染性心内膜炎的患者应当首先采用抗生素及抗凝治疗。考虑此类患者通常为开胸手术的高危患者,因此不推荐采用开胸手术治疗。必要时,可再次经导管置入主动脉瓣膜移植物,以防栓子脱落。

8.术后管理
8.1 术后监测

主动脉瓣微创腔内治疗后,患者由于血流动力学的改变,有发生心功能不全、突发致死性心律失常的可能,因此推荐术后于ICU观察至少24 h。应当注意患者体温、限制出入量及能量维持,并给予必要镇痛、吸氧。动脉入路部位,应当密切观察有无出血及闭塞情况。心尖入路患者应当防止血压剧烈搏动,预防心尖穿刺点出血。患者循环、呼吸功能稳定后,可移至普通病房。推荐在普通病房中采用24 h心电遥测。

术后的实验室检查,对于早期发现患者心衰、冠状动脉缺血加重、肺部感染和深静脉血栓形成有重要作用,推荐每两日复查相关指标至患者出院。术后实验室检测项目应当包括:血红蛋白、白细胞计数、血小板计数、D-二聚体、血肌酐、肌钙蛋白、BNP。

8.2 术后特殊药物治疗

抗凝及抗血小板药物不光可以预防主动脉瓣膜移植物的血栓形成,对下肢深静脉血栓形成也有一定预防作用[73]。在不能进食前,应以低分子肝素或普通肝素桥接治疗,可进食后,同时服用阿司匹林75~100 mg/日、盐酸氯吡格雷50~75 mg/日。

8.3 出院前检查及出院标准

出院前应当复查TTE,评价瓣口面积、平均跨瓣压、最大射血速度和左心室射血分数等。主动瓣口面积大于1 cm2或平均跨瓣压降低10 mmHg,视为治疗有效。其他检查包括ECG、胸部X线正位片,排除心律失常、肺部感染。如无明显血管相关并发症风险,不推荐对所有患者复查CTA。实验室检查应复查血常规、肝肾功能、心肌酶谱检查、BNP。出院前,应尽量使患者恢复正常自主心率。若心律无法转复,应当置入永久性心脏起搏器。患者出院前,心功能分级应不低于术前水平。血小板、血红蛋白、BNP、肌钙蛋白应当恢复或大致恢复至术前基线水平。

9.术后随访与药物治疗

主动脉瓣狭窄微创腔内治疗虽然可以即刻改善主动脉瓣功能,但患者疾病仍可被认为在缓慢进展中。主要原因在于长期主动脉瓣狭窄导致的心脏及外周器官损害不能立刻消除,以及主动脉瓣移植物远期并发症的存在。因此,所有患者均需要终身定期随访及合理的药物治疗。

9.1 术后随访

术后3、6个月应当复查TTE。此后每年复查TTE,评价移植物位置、瓣周漏、平均跨瓣压、最大射血速度及心脏功能。当患者临床症状加重,或新发临床症状时,应立即复查TTE,排除主动脉瓣血栓形成、瓣膜退化和移植物移位等。除非考虑瓣膜退化,或移植物移位导致大量瓣周漏的患者,不推荐常规随访行TEE检查。

9.2 术后药物治疗

患者行主动脉瓣狭窄微创腔内治疗后,应当至少行6个月的阿司匹林75~100 mg/日和盐酸氯吡格雷50~75 mg/日的复合抗血小板治疗。对所有患者均使用华法林抗凝,不能给患者带来额外的受益,反而可能增加出血风险。但对于新发或既往持续性房颤病室的患者,应行规范的华法林抗凝治疗。长期的抗血小板治疗疗效尚不明确。但考虑患者全身动脉硬化,推荐长期常规抗血小板治疗。其他药物治疗主要用于控制血压,改善心衰,推荐采用β受体阻断剂及ACEI/ARB类药物。服用他汀类药物不能使患者受益。

9.3 再次治疗的选择

患者在随访过程中,若出现严重的主动瓣膜移植物相关并发症,应当考虑再次治疗。重度主动脉反流或瓣周漏,可能由于移植物移位或主动脉瓣破损造成,应当短期内行二次主动脉瓣移植物置入。

10.主动脉瓣狭窄微创腔内治疗的团队及硬件条件

主动脉瓣狭窄微创腔内治疗是一项多学科融合的微创腔内技术,应当在多学科合作模式下进行[74,75]

10.1 多学科团队的人员配置

至少应当包括:(1)心脏外科医师,(2)血管外科医师,(3)心脏内科医师,(4)麻醉科医师,(5)重症医学科医师,(6)超声科医师,(7)放射影像科医师。主刀医师及其团队应当接受一段时间的系统训练,并在开展主动脉瓣狭窄微创腔内治疗的早期,在有经验的医师协助下进行患者术前评估及手术操作。

10.2 手术室布局与设备要求

主动脉瓣狭窄微创腔内治疗应在杂交手术室或心脏导管室进行,至少应当包括:数字减影血管造影机、超声心动图、体外循环设备、麻醉机及外科开胸手术所需的基本设备[75]

参考文献
[1]
EvebornGW, SchirmerH, HeggelundG, et al. The evolving epidemiology of valvular aortic stenosis. the Tromsø study[J]. Heart, 2013, 99( 6): 396- 400. doi: 10.1136/heartjnl-2012-302265.
[2]
OsnabruggeRL, MylotteD, HeadSJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study[J]. J Am Coll Cardiol, 2013, 62( 11): 1002- 1012. doi: 10.1016/j.jacc.2013.05.015.
[3]
NistriS, BassoC, MarzariC, et al. Frequency of bicuspid aortic valve in young male conscripts by echocardiogram[J]. Am J Cardiol, 2005, 96( 5): 718- 721.
[4]
SiuSC, SilversidesCK. Bicuspid aortic valve disease[J]. J Am Coll Cardiol, 2010, 55( 25): 2789- 2800. doi: 10.1016/j.jacc.2009.12.068.
[5]
RobertsWC, KoJM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation[J]. Circulation, 2005, 111( 7): 920- 925.
[6]
RosenhekR, BinderT, PorentaG, et al. Predictors of outcome in severe, asymptomatic aortic stenosis[J]. N Engl J Med, 2000, 343( 9): 611- 617.
[7]
OttoCM, BurwashIG, LeggetME, et al. Prospective study of asymptomatic valvular aortic stenosis[J]. Clinical, echocardiographic, and exercise predictors of outcome. Circulation, 1997, 95( 9): 2262- 2270.
[8]
PellikkaPA, SaranoME, NishimuraRA, et al. Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up[J]. Circulation, 2005, 111( 24): 3290- 3295.
[9]
LeonMB, SmithCR, MackM, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery[J]. N Engl J Med, 2010, 363( 17): 1597- 1607. doi: 10.1056/NEJMoa1008232.
[10]
Ben-DorI, PichardAD, GonzalezMA, et al. Correlates and causes of death in patients with severe symptomatic aortic stenosis who are not eligible to participate in a clinical trial of transcatheter aortic valve implantation[J]. Circulation, 2010, 122( 11 Suppl): S37- S42. doi: 10.1161/CIRCULATIONAHA.109.926873.
[11]
TurinaJ, HessO, SepulcriF, et al. Spontaneous course of aortic valve disease[J]. Eur Heart J, 1987, 8( 5): 471- 483.
[12]
OhJK, TaliercioCP, HolmesDR, et al. Prediction of the severity of aortic stenosis by Doppler aortic valve area determination: prospective Doppler-catheterization correlation in 100 patients[J]. J Am Coll Cardiol, 1988, 11( 6): 1227- 1234.
[13]
BagurR, Rodés-CabauJ, DoyleD, et al. Usefulness of TEE as the primary imaging technique to guide transcatheter transapical aortic valve implantation[J]. JACC Cardiovasc Imaging, 2011, 4( 2): 115- 124. doi: 10.1016/j.jcmg.2010.10.009.
[14]
Messika-ZeitounD, SerfatyJM, BrochetE, et al. Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation[J]. J Am Coll Cardiol, 2010, 55( 3): 186- 194. doi: 10.1016/j.jacc.2009.06.063.
[15]
KoosR, AltiokE, MahnkenAH, et al. Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography: implications for transcatheter aortic valve implantation[J]. Int J Cardiol, 2012, 158( 3): 353- 358. doi: 10.1016/j.ijcard.2011.01.044.
[16]
DelgadoV, NgAC, van de VeireNR, et al. Transcatheter aortic valve implantation: role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function[J]. Eur Heart J, 2010, 31( 9): 1114- 1123. doi: 10.1093/eurheartj/ehq018.
[17]
BinderRK, WebbJG, WillsonAB, et al. The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial[J]. J Am Coll Cardiol, 2013, 62( 5): 431- 438. doi: 10.1016/j.jacc.2013.04.036.
[18]
JabbourA, IsmailTF, MoatN, et al. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation: comparison among cardiovascular magnetic resonance, cardiac computed tomography, and echocardiography[J]. J Am Coll Cardiol, 2011, 58( 21): 2165- 2173. doi: 10.1016/j.jacc.2011.09.010.
[19]
NishimuraS, IzumiC, NishigaM, et al. Predictors of Rapid Progression and Clinical Outcome of Asymptomatic Severe Aortic Stenosis[J]. Circ J, 2016, 80( 8): 1863- 1869. doi: 10.1253/circj.CJ-16-0333.
[20]
KaragounisA, ValenciaO, ChandrasekaranV, et al. Management of patients undergoing coronary artery bypass graft surgery with mild to moderate aortic stenosis[J]. J Heart Valve Dis, 2004, 13( 3): 369- 373.
[21]
SmithWT 4th, FergusonTB, RyanT, et al. Should coronary artery bypass graft surgery patients with mild or moderate aortic stenosis undergo concomitant aortic valve replacement? A decision analysis approach to the surgical dilemma[J]. J Am Coll Cardiol, 2004, 44( 6): 1241- 1247.
[22]
SamadZ, VoraAN, DunningA, et al. Aortic valve surgery and survival in patients with moderate or severe aortic stenosis and left ventricular dysfunction[J]. Eur Heart J, 2016, 37( 28): 2276- 2286. doi: 10.1093/eurheartj/ehv701.
[23]
KodaliSK, WilliamsMR, SmithCR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement[J]. N Engl J Med, 2012, 366( 18): 1686- 1695. doi: 10.1056/NEJMoa1200384.
[24]
RosenhekR, ZilberszacR, SchemperM, et al. Natural history of very severe aortic stenosis[J]. Circulation, 2010, 121( 1): 151- 156. doi: 10.1161/CIRCULATIONAHA.109.894170.
[25]
KangDH, ParkSJ, RimJH, et al. Early surgery versus conventional treatment in asymptomatic very severe aortic stenosis[J]. Circulation, 2010, 121( 13): 1502- 1509. doi: 10.1161/CIRCULATIONAHA.109.909903.
[26]
ShahianDM, O'BrienSM, FilardoG, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3--valve plus coronary artery bypass grafting surgery[J]. Ann Thorac Surg, 2009, 88( 1 Suppl): S43- S62. doi: 10.1016/j.athoracsur.2009.05.055.
[27]
O'BrienSM, ShahianDM, FilardoG, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2-isolated valve surgery[J]. Ann Thorac Surg, 2009, 88( 1 Suppl): S23- S42. doi: 10.1016/j.athoracsur.2009.05.056.
[28]
RosenhekR, IungB, TornosP, et al. ESC Working Group on Valvular Heart Disease Position Paper: assessing the risk of interventions in patients with valvular heart disease[J]. Eur Heart J, 2012, 33( 7): 822-828, 828a, 828b. doi: 10.1093/eurheartj/ehr061.
[29]
LeeDH, ButhKJ, MartinBJ, et al. Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery[J]. Circulation, 2010, 121( 8): 973- 978. doi: 10.1161/CIRCULATIONAHA.108.841437.
[30]
NishimuraRA, OttoCM, BonowRO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2014, 63( 22): e57- e185. doi: 10.1016/j.jacc.2014.02.536.
[31]
GargiuloG, SanninoA, CapodannoD, et al. Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement: A Systematic Review and Meta-analysis[J]. Ann Intern Med, 2016. doi: 10.7326/M16-0060.
[32]
ThouraniVH, KodaliS, MakkarRR, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis[J]. Lancet, 2016, 387( 10034): 2218- 2225. doi: 10.1016/S0140-6736(16)30073-3.
[33]
OsnabruggeRL, ArnoldSV, ReynoldsMR, et al. Health status after transcatheter aortic valve replacement in patients at extreme surgical risk: results from the CoreValve U. S. trial[J]. JACC Cardiovasc Interv, 2015, 8( 2): 315- 323. doi: 10.1016/j.jcin.2014.08.016.
[34]
MackMJ, LeonMB, SmithCR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis(PARTNER 1): a randomised controlled trial[J]. Lancet, 2015, 385( 9986): 2477- 2484. doi: 10.1016/S0140-6736(15)60308-7.
[35]
HolmesDR, MackMJ, KaulS, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement[J]. J Am Coll Cardiol, 2012, 59( 13): 1200- 1254. doi: 10.1016/j.jacc.2012.01.001.
[36]
NishimuraRA, OttoCM, BonowRO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. J Thorac Cardiovasc Surg, 2014, 148( 1): e1- e132. doi: 10.1016/j.jtcvs.2014.05.014.
[37]
EarlsJP, BermanEL, UrbanBA, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose[J]. Radiology, 2008, 246( 3): 742- 753. doi: 10.1148/radiol.2463070989.
[38]
FeuchtnerG, GoettiR, PlassA, et al. Dual-step prospective ECG-triggered 128-slice dual-source CT for evaluation of coronary arteries and cardiac function without heart rate control: a technical note[J]. Eur Radiol, 2010, 20( 9): 2092- 2099. doi: 10.1007/s00330-010-1794-7.
[39]
WillsonAB, WebbJG, LabountyTM, et al. 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis[J]. J Am Coll Cardiol, 2012, 59( 14): 1287- 1294. doi: 10.1016/j.jacc.2011.12.015.
[40]
LeberAW, EichingerW, RieberJ, et al. MSCT guided sizing of the Edwards Sapien XT TAVI device: impact of different degrees of oversizing on clinical outcome[J]. Int J Cardiol, 2013, 168( 3): 2658- 2664. doi: 10.1016/j.ijcard.2013.03.030.
[41]
BarbantiM, YangTH, Rodès CabauJ, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement[J]. Circulation, 2013, 128( 3): 244- 253. doi: 10.1161/CIRCULATIONAHA.113.002947.
[42]
RibeiroHB, Nombela-FrancoL, UrenaM, et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review[J]. JACC Cardiovasc Interv, 2013, 6( 5): 452- 461. doi: 10.1016/j.jcin.2012.11.014.
[43]
HongSJ, HongMK, KoYG, et al. Migration of calcium and atheromatous plaque in computed tomography: an important mechanism of coronary artery occlusion after transcatheter aortic valve replacement[J]. J Am Coll Cardiol, 2014, 63( 12): e23. doi: 10.1016/j.jacc.2013.08.1664.
[44]
GurvitchR, WoodDA, LeipsicJ, et al. Multislice computed tomography for prediction of optimal angiographic deployment projections during transcatheter aortic valve implantation[J]. JACC Cardiovasc Interv, 2010, 3( 11): 1157- 1165. doi: 10.1016/j.jcin.2010.09.010.
[45]
KurraV, KapadiaSR, TuzcuEM, et al. Pre-procedural imaging of aortic root orientation and dimensions: comparison between X-ray angiographic planar imaging and 3-dimensional multidetector row computed tomography[J]. JACC Cardiovasc Interv, 2010, 3( 1): 105- 113. doi: 10.1016/j.jcin.2009.10.014.
[46]
HayashidaK, LefèvreT, ChevalierB, et al. Transfemoral aortic valve implantation new criteria to predict vascular complications[J]. JACC Cardiovasc Interv, 2011, 4( 8): 851- 858. doi: 10.1016/j.jcin.2011.03.019.
[47]
GoelSS, IgeM, TuzcuEM, et al. Severe aortic stenosis and coronary artery disease--implications for management in the transcatheter aortic valve replacement era: a comprehensive review[J]. J Am Coll Cardiol, 2013, 62( 1): 1- 10. doi: 10.1016/j.jacc.2013.01.096.
[48]
GoelSS, AgarwalS, TuzcuEM, et al. Percutaneous coronary intervention in patients with severe aortic stenosis: implications for transcatheter aortic valve replacement[J]. Circulation, 2012, 125( 8): 1005- 1013. doi: 10.1161/CIRCULATIONAHA.111.039180.
[49]
ChakravartyT, SharmaR1, AbramowitzY, et al. Outcomes in Patients With Transcatheter Aortic Valve Replacement and Left Main Stenting: The TAVR-LM Registry[J]. J Am Coll Cardiol, 2016, 67( 8): 951- 960. doi: 10.1016/j.jacc.2015.10.103.
[50]
NazifTM, WilliamsMR, HahnRT, et al. Clinical implications of new-onset left bundle branch block after transcatheter aortic valve replacement: analysis of the PARTNER experience[J]. Eur Heart J, 2014, 35( 24): 1599- 1607. doi: 10.1093/eurheartj/eht376.
[51]
UrenaM, MokM, SerraV, et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve[J]. J Am Coll Cardiol, 2012, 60( 18): 1743- 1752. doi: 10.1016/j.jacc.2012.07.035.
[52]
GreifM, LangeP, NäbauerM, et al. Transcutaneous aortic valve replacement with the Edwards SAPIEN XT and Medtronic CoreValve prosthesis under fluoroscopic guidance and local anaesthesia only[J]. Heart, 2014, 100( 9): 691- 695. doi: 10.1136/heartjnl-2013-304918.
[53]
WitzkeC, DonCW, CubedduRJ, et al. Impact of rapid ventricular pacing during percutaneous balloon aortic valvuloplasty in patients with critical aortic stenosis: should we be using it?[J]. Catheter Cardiovasc Interv, 2010, 75( 3): 444- 452. doi: 10.1002/ccd.22289.
[54]
BernelliC, ChieffoA, MontorfanoM, et al. Usefulness of baseline activated clotting time-guided heparin administration in reducing bleeding events during transfemoral transcatheter aortic valve implantation[J]. JACC Cardiovasc Interv, 2014, 7( 2): 140- 151. doi: 10.1016/j.jcin.2013.10.016.
[55]
PetronioAS, De CarloM, BedogniF, et al. 2-year results of CoreValve implantation through the subclavian access: a propensity-matched comparison with the femoral access[J]. J Am Coll Cardiol, 2012, 60( 6): 502- 507. doi: 10.1016/j.jacc.2012.04.014.
[56]
MylotteD, SudreA, TeigerE, et al. Transcarotid Transcatheter Aortic Valve Replacement: Feasibility and Safety[J]. JACC Cardiovasc Interv, 2016, 9( 5): 472- 480. doi: 10.1016/j.jcin.2015.11.045.
[57]
HahnRT, KodaliS, TuzcuEM, et al. Echocardiographic imaging of procedural complications during balloon-expandable transcatheter aortic valve replacement[J]. JACC Cardiovasc Imaging, 2015, 8( 3): 288- 318. doi: 10.1016/j.jcmg.2014.12.013.
[58]
HahnRT, GillamLD, LittleSH. Echocardiographic imaging of procedural complications during self-expandable transcatheter aortic valve replacement[J]. JACC Cardiovasc Imaging, 2015, 8( 3): 319- 336. doi: 10.1016/j.jcmg.2015.01.001.
[59]
AliOF, SchultzC, JabbourA, et al. Predictors of paravalvular aortic regurgitation following self-expanding Medtronic CoreValve implantation: the role of annulus size, degree of calcification, and balloon size during pre-implantation valvuloplasty and implant depth[J]. Int J Cardiol, 2015, 179: 539- 545. doi: 10.1016/j.ijcard.2014.10.117.
[60]
BabaliarosVC, JunagadhwallaZ, LerakisS, et al. Use of balloon aortic valvuloplasty to size the aortic annulus before implantation of a balloon-expandable transcatheter heart valve[J]. JACC Cardiovasc Interv, 2010, 3( 1): 114- 118. doi: 10.1016/j.jcin.2009.09.017.
[61]
PetronioAS, SinningJM, Van MieghemN, et al. Optimal Implantation Depth and Adherence to Guidelines on Permanent Pacing to Improve the Results of Transcatheter Aortic Valve Replacement With the Medtronic CoreValve System: The CoreValve Prospective, International, Post-Market ADVANCE-II Study[J]. JACC Cardiovasc Interv, 2015, 8( 6): 837- 846. doi: 10.1016/j.jcin.2015.02.005.
[62]
PanchalHB, LadiaV, AminP, et al. A meta-analysis of mortality and major adverse cardiovascular and cerebrovascular events in patients undergoing transfemoral versus transapical transcatheter aortic valve implantation using edwards valve for severe aortic stenosis[J]. Am J Cardiol, 2014, 114( 12): 1882- 1890. doi: 10.1016/j.amjcard.2014.09.029.
[63]
RibeiroHB, WebbJG, MakkarRR, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry[J]. J Am Coll Cardiol, 2013, 62( 17): 1552- 1562. doi: 10.1016/j.jacc.2013.07.040.
[64]
JilaihawiH, ChakravartyT, WeissRE, et al. Meta-analysis of complications in aortic valve replacement: comparison of Medtronic-Corevalve, Edwards-Sapien and surgical aortic valve replacement in 8, 536 patients[J]. Catheter Cardiovasc Interv, 2012, 80( 1): 128- 138. doi: 10.1002/ccd.23368.
[65]
DahdouhZ, RouleV, GrollierG. Life-threatening iliac artery rupture during transcatheter aortic valve implantation(TAVI): diagnosis and management[J]. Heart, 2013, 99( 16): 1217- 1218. doi: 10.1136/heartjnl-2013-303591.
[66]
SubbanV, IncaniA, ClarkeA, et al. Conservative management and resolution of a contained rupture of aortic annulus following transcatheter valve replacement[J]. JACC Cardiovasc Interv, 2013, 6( 6): e33- e34. doi: 10.1016/j.jcin.2013.02.012.
[67]
PilieroN, ThonyF, VanzettoG, et al. Gluing of an Aortic Perforation During Transcatheter Aortic Valve Replacement: An Alternative Treatment for Annular Rupture?[J]. JACC Cardiovasc Interv, 2015, 8( 15): 2037- 2038. doi: 10.1016/j.jcin.2015.08.027.
[68]
SgroiC, GulinoS, AttizzaniGF, et al. Valve rupture after balloon aortic valvuloplasty successfully managed with emergency transcatheter aortic valve implantation[J]. Int J Cardiol, 2013, 168( 1): e13- e14. doi: 10.1016/j.ijcard.2013.05.022.
[69]
UrenaM, WebbJG, TamburinoC, et al. Permanent pacemaker implantation after transcatheter aortic valve implantation: impact on late clinical outcomes and left ventricular function[J]. Circulation, 2014, 129( 11): 1233- 1243. doi: 10.1161/CIRCULATIONAHA.113.005479.
[70]
UrenaM, HayekS, CheemaAN, et al. Arrhythmia burden in elderly patients with severe aortic stenosis as determined by continuous electrocardiographic recording: toward a better understanding of arrhythmic events after transcatheter aortic valve replacement[J]. Circulation, 2015, 131( 5): 469- 477. doi: 10.1161/CIRCULATIONAHA.114.011929.
[71]
FairbairnTA, MatherAN, BijsterveldP, et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status[J]. Heart, 2012, 98( 1): 18- 23. doi: 10.1136/heartjnl-2011-300065.
[72]
LanskyAJ, SchoferJ, TchetcheD, et al. A prospective randomized evaluation of the TriGuard HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial[J]. Eur Heart J, 2015, 36( 31): 2070- 2078.
[73]
RiazH, AlansariSA, KhanMS, et al. Safety and Use of Anticoagulation After Aortic Valve Replacement With Bioprostheses: A Meta-Analysis[J]. Circ Cardiovasc Qual Outcomes, 2016, 9( 3): 294- 302. doi: 10.1161/CIRCOUTCOMES.115.002696.
[74]
SintekM, ZajariasA. Patient evaluation and selection for transcatheter aortic valve replacement: the heart team approach[J]. Prog Cardiovasc Dis, 2014, 56( 6): 572- 582. doi: 10.1016/j.pcad.2014.02.003.
[75]
TaylorJ. The outcome of patients referred to a transcatheter aortic valve implantation multidisciplinary team[J]. Eur Heart J, 2011, 32( 2): 126- 128.
X
选择其他平台 >>
分享到