参考文献
[1]
HoodR, BuddA, SorondFA, et al.
Peri-operative neurological complications[J].
Anaesthesia,
2018,
73
Suppl 1:
67-
75.
.
[2]
ToegHD, NathanH, RubensF, et al.
Clinical impact of neurocognitive deficits after cardiac surgery[J].
J Thorac Cardiovasc Surg,
2013,
145 (
6):
1545-
1549.
.
[3]
CropseyC, KennedyJ, HanJ, et al.
Cognitive dysfunction, delirium, and stroke in cardiac surgery patients[J].
Semin Cardiothorac Vasc Anesth,
2015,
19 (
4):
309-
317.
.
[4]
KotfisK, SzylińskaA, ListewnikM, et al.
Early delirium after cardiac surgery: an analysis of incidence and risk factors in elderly (≥65 years) and very elderly (≥80 years) patients[J].
Clin Interv Aging,
2018,
13:
1061-
1070.
.
[5]
ShethKN, NourollahzadehE.
Neurologic complications of cardiac and vascular surgery[J].
Handb Clin Neurol,
2017,
141:
573-
592.
.
[6]
KhozhenkoA, LampertiM, TerracinaS, et al.
Can cerebral near-infrared spectroscopy predict cerebral ischemic events in neurosurgical patients? A narrative review of the literature[J/OL].
J Neurosurg Anesthesiol,
2018 [
2018-07-15].
https://www.ncbi.nlm.nih.gov/pubmed/30001276.
.
[7]
HellerBJ, DeshpandeP, HellerJA, et al.
Tissue oximetry during cardiac surgery and in the cardiac intensive care unit: a prospective observational trial[J].
Ann Card Anaesth,
2018,
21 (
4):
371-
375.
.
[8]
NarayanP, KhanMW, DasD, et al.
Carotid artery screening at the time of coronary artery bypass: does it influence neurological outcomes?[J].
Int J Cardiol,
2017,
243:
140-
144.
.
[9]
HillisLD, SmithPK, AndersonJL, et al.
2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation / American Heart Association Task Force on practice guidelines[J].
Circulation,
2011,
124 (
23):
e652-
735.
.
[10]
ShadvarK, BaastaniF, MahmoodpoorA, et al.
Evaluation of the prevalence and risk factors of delirium in cardiac surgery ICU[J].
J Cardiovasc Thorac Res,
2013,
5 (
4):
157-
161.
.
[11]
LinY, ChenJ, WangZ.
Meta-analysis of factors which influence delirium following cardiac surgery[J].
J Card Surg,
2012,
27 (
4):
481-
492.
.
[12]
KazmierskiJ, BanysA, LatekJ, et al.
Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study[J].
Crit Care,
2013,
17 (
2):
R38.
.
[13]
SmartNA, DiebergG, KingN.
Long-term outcomes of on-versus off-pump coronary artery bypass grafting[J].
J Am Coll Cardiol,
2018,
71 (
9):
983-
991.
.
[14]
PatelN, HorsfieldMA, BanahanC, et al.
Impact of perioperative infarcts after cardiac surgery[J].
Stroke,
2015,
46 (
3):
680-
686.
.
[15]
BrownCH 4th, FaigleR, KlinkerL, et al.
The association of brain MRI characteristics and postoperative delirium in cardiac surgery patients[J].
Clin Ther,
2015,
37 (
12):
.
[16]
OiK, AraiH.
Stroke associated with coronary artery bypass grafting[J].
Gen Thorac Cardiovasc Surg,
2015,
63 (
9):
487-
495.
.
[17]
SakamotoT.
Current status of brain protection during surgery for congenital cardiac defect[J].
Gen Thorac Cardiovasc Surg,
2016,
64 (
2):
72-
81.
.
[18]
SecoM, EdelmanJJ, Van BoxtelB, et al.
Neurologic injury and protection in adult cardiac and aortic surgery[J].
J Cardiothorac Vasc Anesth,
2015,
29 (
1):
185-
195.
.
[19]
O'NealJB, BillingsFT 4th, LiuX, et al.
Risk factors for delirium after cardiac surgery: a historical cohort study outlining the influence of cardiopulmonary bypass[J].
Can J Anaesth,
2017,
64 (
11):
1129-
1137.
.
[20]
AbrahamovD, LevranO, NaparstekS, et al.
Blood-brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition[J].
Ann Thorac Surg,
2017,
104 (
1):
161-
169.
.
[21]
IkramA, MohiuddinH, ZiaA, et al.
Does epiaortic ultrasound screening reduce perioperative stroke in patients undergoing coronary surgery? A topical review[J].
J Clin Neurosci,
2018,
50:
30-
34.
.
[22]
UyarIS, AkpinarMB, SahinV, et al.
Effects of single aortic clamping versus partial aortic clamping techniques on post-operative stroke during coronary artery bypass surgery[J].
Cardiovasc J Afr,
2013,
24 (
6):
213-
217.
.
[23]
McDonaghDL, BergerM, MathewJP, et al.
Neurological complications of cardiac surgery[J].
Lancet Neurol,
2014,
13 (
5):
490-
502.
.
[24]
LouS, JiB, LiuJ, et al.
Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure[J].
Int J Artif Organs,
2011,
34 (
11):
1039-
1051.
.
[25]
CarrierM, DenaultA, LavoieJ, et al.
Randomized controlled trial of pericardial blood processing with a cell-saving device on neurologic markers in elderly patients undergoing coronary artery bypass graft surgery[J].
Ann Thorac Surg,
2006,
82 (
1):
51-
55.
.
[26]
ZanattaP, FortiA, MinnitiG, et al.
Brain emboli distribution and differentiation during cardiopulmonary bypass[J].
J Cardiothorac Vasc Anesth,
2013,
27 (
5):
865-
875.
.
[27]
ReagorJA, HoltDW.
Removal of gross air embolization from cardiopulmonary bypass circuits with integrated arterial line filters: a comparison of circuit designs[J].
J Extra Corpor Technol,
2016,
48 (
1):
19-
22.
[28]
HusebråtenIM, FianeAE, RingdalMIL, et al.
Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass[J].
Perfusion,
2018,
33 (
1):
30-
35.
.
[29]
van der ZeeMP, KoeneBM, MarianiMA.
Fatal air embolism during cardiopulmonary bypass: analysis of an incident and prevention measures[J].
Interact Cardiovasc Thorac Surg,
2014,
19 (
5):
875-
877.
.
[30]
NeemaPK, PathakS, VarmaPK, et al.
Case 2: 2007: Systemic air embolization after termination of cardiopulmonary bypass[J].
J Cardiothorac Vasc Anesth,
2007,
21 (
2):
288-
297.
.
[31]
SelnesOA, GottesmanRF, GregaMA, et al.
Cognitive and neurologic outcomes after coronary-artery bypass surgery[J].
N Engl J Med,
2012,
366 (
3):
250-
257.
.
[32]
Lo CocoD, LopezG, CorraoS.
Cognitive impairment and stroke in elderly patients[J].
Vasc Health Risk Manag,
2016,
12:
105-
116.
.
[33]
ItoA, GotoT, MaekawaK, et al.
Postoperative neurological complications and risk factors for pre-existing silent brain infarction in elderly patients undergoing coronary artery bypass grafting[J].
J Anesth,
2012,
26 (
3):
405-
411.
.
[34]
GotoT, MaekawaK.
Cerebral dysfunction after coronary artery bypass surgery[J].
J Anesth,
2014,
28 (
2):
242-
248.
.
[35]
CaliskanE, SahinA, YilmazM, et al.
Epicardial left atrial appendage AtriClip occlusion reduces the incidence of stroke in patients with atrial fibrillation undergoing cardiac surgery[J].
Europace,
2018,
20 (
7):
e105-
114.
.
[36]
DomínguezH, MadsenCV, WesthONH, et al.
Does left atrial appendage amputation during routine cardiac surgery reduce future atrial fibrillation and stroke?[J].
Curr Cardiol Rep,
2018,
20 (
10):
99.
.
[37]
MelduniRM, SchaffHV, LeeHC, et al.
Impact of left atrial appendage closure during cardiac surgery on the occurrence of early postoperative atrial fibrillation, stroke, and mortality: a propensity score-matched analysis of 10 633 patients[J].
Circulation,
2017,
135 (
4):
366-
378.
.
[38]
Park-HansenJ, HolmeSJV, IrmukhamedovA, et al.
Adding left atrial appendage closure to open heart surgery provides protection from ischemic brain injury six years after surgery independently of atrial fibrillation history: the LAACS randomized study[J].
J Cardiothorac Surg,
2018,
13 (
1):
53.
.
[39]
OnoM, JoshiB, BradyK, et al.
Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke[J].
Br J Anaesth,
2012,
109 (
3):
391-
398.
.
[40]
MariscalcoG, BiancariF, JuvonenT, et al.
Red blood cell transfusion is a determinant of neurological complications after cardiac surgery[J].
Interact Cardiovasc Thorac Surg,
2015,
20 (
2):
166-
171.
.
[41]
GopaldasRR, ChuD, DaoTK, et al.
Staged versus synchronous carotid endarterectomy and coronary artery bypass grafting: analysis of 10-year nationwide outcomes[J].
Ann Thorac Surg,
2011,
91 (
5):
1323-
1329,
.
.
[42]
WindeckerS, KolhP, AlfonsoF, et al.
2014 ESC/EACTS guidelines on myocardial revascularization[J].
Rev Esp Cardiol (Engl Ed),
2015,
68 (
2):
144.
.
[43]
ChristiansenCB, BergRM, PlovsingR, et al.
Dynamic cerebral autoregulation after cardiopulmonary bypass[J].
Thorac Cardiovasc Surg,
2016,
64 (
7):
569-
574.
.
[44]
NomuraY, FaegleR, HoriD, et al.
Cerebral small vessel, but not large vessel disease, is associated with impaired cerebral autoregulation during cardiopulmonary bypass: a retrospective cohort study[J].
Anesth Analg,
2018,
127 (
6):
1314-
1322.
.
[45]
GoldbergJB, ShannKG, FitzgeraldD, et al.
The relationship between intra-operative transfusions and nadir hematocrit on post-operative outcomes after cardiac surgery[J].
J Extra Corpor Technol,
2016,
48 (
4):
188-
193.
[46]
KinnunenEM, JuvonenT, BiancariF.
Use of blood products and diseased ascending aorta are determinants of stroke after off-pump coronary artery bypass grafting[J].
J Cardiothorac Vasc Anesth,
2015,
29 (
5):
1180-
1186.
.
[47]
MurphyGS, HesselEA, GroomRC.
Optimal perfusion during cardio-pulmonary bypass: an evidence-based approach[J].
Anesth Analg,
2009,
108 (
5):
1394-
1417.
.
[48]
MoscaMS, JustisonG, ReeceTB.
A clinical protocol for goal directed cerebral perfusion during aortic arch surgery[J].
Semin Cardiothorac Vasc Anesth,
2016,
20 (
4):
289-
297.
.
[49]
BronickiRA, HallM.
Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment[J].
Pediatr Crit Care Med,
2016,
17 (
8
Suppl 1):
S272-
278.
.
[50]
YiSQ, YangM, DuanKM.
Immune-mediated metabolic kynurenine pathways are involved in the postoperative cognitive dysfunction after cardiopulmonary bypass[J].
Thorac Cardiovasc Surg,
2015,
63 (
7):
618-
623.
.
[51]
ScottDA, EveredLA, SilbertBS.
Cardiac surgery, the brain, and inflammation[J].
J Extra Corpor Technol,
2014,
46 (
1):
15-
22.
[52]
FlohAA, ManlhiotC, RedingtonAN, et al.
Insulin resistance and inflammation are a cause of hyperglycemia after pediatric cardiopulmonary bypass surgery[J].
J Thorac Cardiovasc Surg,
2015,
150 (
3):
.
[53]
SmithB, VuE, KiblerK, et al.
Does hypothermia impair cerebrovascular autoregulation in neonates during cardiopulmonary bypass?[J].
Paediatr Anaesth,
2017,
27 (
9):
905-
910.
.
[54]
ThiessenS, VanhorebeekI, Van den BergheG.
Glycemic control and outcome related to cardiopulmonary bypass[J].
Best Pract Res Clin Anaesthesiol,
2015,
29 (
2):
177-
187.
.
[55]
KalmovichB, Bar-DayanY, BoazM, et al.
Continuous glucose monitoring in patients undergoing cardiac surgery[J].
Diabetes Technol Ther,
2012,
14 (
3):
232-
238.
.
[56]
RungatscherA, LucianiGB, LinardiD, et al.
Temperature variation after rewarming from deep hypothermic circulatory arrest is associated with survival and neurologic outcome[J].
Ther Hypothermia Temp Manag,
2017,
7 (
2):
101-
106.
.
[57]
OkitaY.
Neuro-protection in open arch surgery[J].
Ann Cardiothorac Surg,
2018,
7 (
3):
389-
396.
.
[58]
PaciniD, MuranaG, Di MarcoL, et al.
Cerebral perfusion issues in type A aortic dissection[J].
J Vis Surg,
2018,
4:
77.
.
[59]
HarkyA, FokM, BashirM, et al.
Brain protection in aortic arch aneurysm: antegrade or retrograde?[J].
Gen Thorac Cardiovasc Surg,
2019,
67 (
1):
102-
110.
.
[60]
FerradalSL, YukiK, VyasR, et al.
Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: feasibility and clinical implications[J].
Sci Rep,
2017,
7:
44117.
.
[61]
WangX, JiB, YangB, et al.
Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study[J].
ASAIO J,
2012,
58 (
2):
122-
126.
.
[62]
El-Sayed AhmadA, PapadopoulosN, RisteskiP, et al.
Is more than one hour of selective antegrade cerebral perfusion in moderate-to-mild systemic hypothermic circulatory arrest for surgery of acute type A aortic dissection safe?[J].
Thorac Cardiovasc Surg,
2018,
66 (
3):
215-
221.
.
[63]
NumataS, TsutsumiY, MontaO, et al.
Acute type A aortic dissection repair with mild-to-moderate hypothermic circulatory arrest and selective cerebral perfusion[J].
J Cardiovasc Surg (Torino),
2015,
56 (
4):
525-
530.
[64]
LinardiD, FaggianG, RungatscherA.
Temperature management during circulatory arrest in cardiac surgery[J].
Ther Hypothermia Temp Manag,
2016,
6 (
1):
9-
16.
.
[65]
PirzadehA, SchearsG, PastuszkoP, et al.
Effect of deep hypothermic circulatory arrest followed by low-flow cardiopulmonary bypass on brain metabolism in newborn piglets: comparison of pH-stat and α-stat management[J].
Pediatr Crit Care Med,
2011,
12 (
2):
e79-
86.
.
[66]
GrocottHP, WhiteWD, MorrisRW, et al.
Genetic polymorphisms and the risk of stroke after cardiac surgery[J].
Stroke,
2005,
36 (
9):
1854-
1858.
.
[67]
StępieńE, KrawczykS, KapelakB, et al.
Effect of the E-selectin gene polymorphism (S149R) on platelet activation and adverse events after coronary artery surgery[J].
Arch Med Res,
2011,
42 (
5):
375-
381.
.
[68]
Sanchez-de-ToledoJ, ChrysostomouC, MunozR, et al.
Cerebral regional oxygen saturation and serum neuromarkers for the prediction of adverse neurologic outcome in pediatric cardiac surgery[J].
Neurocrit Care,
2014,
21 (
1):
133-
139.
.
[69]
HuZ, XuL, ZhuZ, et al.
Effects of hypothermic cardiopulmonary bypass on internal jugular bulb venous oxygen saturation, cerebral oxygen saturation, and bispectral index in pediatric patients undergoing cardiac surgery: a prospective study[J].
Medicine (Baltimore),
2016,
95 (
2):
e2483.
.
[70]
ThudiumM, HeinzeI, EllerkmannRK, et al.
Cerebral function and perfusion during cardiopulmonary bypass: a plea for a multimodal monitoring approach[J].
Heart Surg Forum,
2018,
21 (
1):
E028-
035.
.
[71]
TakahashiT, ShiinaY, NagaoM, et al.
Stroke volume ratio derived from magnetic resonance imaging as an indicator of interventricular dyssynchrony predicts future cardiac event in patients with biventricular Fontan circulation[J].
Heart Vessels,
2018.
.
[72]
MarcuseLV, BronsterDJ, FieldsM, et al.
Evaluating the obtunded patient after cardiac surgery: the role of continuous electroencephalography[J].
J Crit Care,
2014,
29 (
2):
.
[73]
SloanTB, EdmondsHL, KohtA.
Intraoperative electrophysiologic monitoring in aortic surgery[J].
J Cardiothorac Vasc Anesth,
2013,
27 (
6):
1364-
1373.
.
[74]
FudickarA, LeiendeckerJ, MeybohmP, et al.
Electrophysiologic neuromonitoring during repair of the thoracoabdominal aorta by anesthesiologists[J].
Minerva Anestesiol,
2011,
77 (
9):
861-
869.
[75]
WhitlockEL, TorresBA, LinN, et al.
Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial[J].
Anesth Analg,
2014,
118 (
4):
809-
817.
.
[76]
EertmansW, GenbruggeC, Vander LaenenM, et al.
The prognostic value of bispectral index and suppression ratio monitoring after out-of-hospital cardiac arrest: a prospective observational study[J].
Ann Intensive Care,
2018,
8 (
1):
34.
.
[77]
MaheshwariA, McCormickPJ, SesslerDI, et al.
Prolonged concurrent hypotension and low bispectral index ('double low') are associated with mortality, serious complications, and prolonged hospitalization after cardiac surgery[J].
Br J Anaesth,
2017,
119 (
1):
40-
49.
.
[78]
ZhangYP, ZhuYB, DuanDD, et al.
Serum UCH-L1 as a novel biomarker to predict neuronal apoptosis following deep hypothermic circulatory arrest[J].
Int J Med Sci,
2015,
12 (
7):
576-
582.
.
[79]
Bar-YosefO, GreidingerD, IskilovaM, et al.
Neurological deficit is predicted by S100B in children after cardiac surgery[J].
Clin Chim Acta,
2018,
481:
56-
60.
.
[80]
Hernández-GarcíaC, Rodríguez-RodríguezA, Egea-GuerreroJJ.
Brain injury biomarkers in the setting of cardiac surgery: still a world to explore[J].
Brain Inj,
2016,
30 (
1):
10-
17.
.
[81]
TrakasE, DomninaY, PanigrahyA, et al.
Serum neuronal biomarkers in neonates with congenital heart disease undergoing cardiac surgery[J].
Pediatr Neurol,
2017,
72:
56-
61.
.
[82]
BarryAE, ChaneyMA, LondonMJ.
Anesthetic management during cardiopulmonary bypass: a systematic review[J].
Anesth Analg,
2015,
120 (
4):
749-
769.
.
[83]
MuJL, LeeA, JoyntGM.
Pharmacologic agents for the prevention and treatment of delirium in patients undergoing cardiac surgery: systematic review and metaanalysis[J].
Crit Care Med,
2015,
43 (
1):
194-
204.
.
[84]
ZhangY, LinW, ShenS, et al.
Randomized comparison of sevoflurane versus propofol-remifentanil on the cardioprotective effects in elderly patients with coronary heart disease[J].
BMC Anesthesiol,
2017,
17 (
1):
104.
.
[85]
BettexDA, WannerPM, BosshartM, et al.
Role of sevoflurane in organ protection during cardiac surgery in children: a randomized controlled trial[J].
Interact Cardiovasc Thorac Surg,
2015,
20 (
2):
157-
165.
.
[86]
CarrZJ, CiosTJ, PotterKF, et al.
Does dexmedetomidine ameliorate postoperative cognitive dysfunction? A brief review of the recent literature[J].
Curr Neurol Neurosci Rep,
2018,
18 (
10):
64.
.
[87]
ChengJ, ZhuP, QinH, et al.
Dexmedetomidine attenuates cerebral ischemia/reperfusion injury in neonatal rats by inhibiting TLR4 signaling[J].
J Int Med Res,
2018,
46 (
7):
2925-
2932.
.
[88]
ChenF, DuanG, WuZ, et al.
Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: a systematic review and meta-analysis[J].
BMJ Open,
2017,
7 (
10):
e014629.
.
[89]
SalamehA, DheinS, DähnertI, et al.
Neuroprotective strategies during cardiac surgery with cardiopulmonary bypass[J].
Int J Mol Sci,
2016,
17 (
11).
.
[90]
ZhouZF, ZhangFJ, HuoYF, et al.
Intraoperative tranexamic acid is associated with postoperative stroke in patients undergoing cardiac surgery[J].
PLoS One,
2017,
12 (
5):
e0177011.
.
[91]
MylesPS, SmithJA, ForbesA, et al.
Tranexamic acid in patients undergoing coronary-artery surgery[J].
N Engl J Med,
2017,
376 (
2):
136-
148.
.
[92]
PulidoJN.
Cardiac surgery blues: the midterm impact of postoperative delirium and the association with mood disorders[J].
J Thorac Cardiovasc Surg,
2018,
155 (
2):
668-
669.
.
[93]
JablonskiJ, GrayJ, MianoT, et al.
Pain, agitation, and delirium guidelines: interprofessional perspectives to translate the evidence[J].
Dimens Crit Care Nurs,
2017,
36 (
3):
164-
173.
.
[94]
Al-QadheebNS, SkrobikY, SchumakerG, et al.
Preventing ICU subsyndromal delirium conversion to delirium with low-dose Ⅳ haloperidol: a double-blind, placebo-controlled pilot study[J].
Crit Care Med,
2016,
44 (
3):
583-
591.
.