神经重症低温治疗中国专家共识
中华神经科杂志, 2015,48(6) : 453-458. DOI: 10.3760/cma.j.issn.1006-7876.2015.06.004

临床研究已经证实心肺复苏后昏迷患者低温治疗安全有效,其脑保护和改善神经功能作用与动物实验研究结果一致。然而,还有更多的脑损伤后昏迷患者或脊髓损伤患者需要开展低温治疗临床研究,并加强低温治疗规范。为此,中华医学会神经病学分会神经重症协作组对成人低温治疗的相关文献(2000–2013年Medline数据库)进行了检索与复习,采用2011版牛津循证医学中心(Oxford Center for Evidence Based Medicine,CEBM)证据分级标准进行证据级别确认和推荐意见确认[1],对证据暂不充分,但专家讨论达到高度共识的意见提高推荐级别(A级推荐)。

低温治疗适应证

低温治疗具有降低颅内压(intracranial pressure)和神经保护作用,并经多个临床试验证实。

一项心肺复苏(包含心室颤动、室性心动过速、心搏骤停)后昏迷患者的系统综述和荟萃分析[5项随机对照试验(randomized controlled trial,RCT),481例]显示:与对照组相比,低温治疗组出院时生存率更高(RR=1.35,95%CI 1.10~1.65),神经功能预后更好(RR=1.55,95%CI 1.22~1.96;1级证据)[2]。另一项心肺复苏(不可电击复律心律)后昏迷患者的系统综述和荟萃分析(1 382例)显示:低温治疗有降低病后6个月病死率(2项RCT,RR=0.85,95% CI 0.65~1.11)、院内病死率(10项队列研究,RR=0.84,95%CI 0.78~0.92)和出院时神经功能不良预后(脑功能分级3~5分,RR=0.95,95%CI 0.90~1.01)的趋势(1级证据)[3]。目前,心肺复苏后昏迷患者低温治疗已成为美国心脏病协会心肺复苏指南推荐的治疗手段[4]

一项大脑半球大面积(≥大脑中动脉供血区的2/3)脑梗死(massive cerebral hemispheric infarction,MCHI)患者的RCT研究显示:部分颅骨切除减压术联合低温治疗6个月后神经功能预后(美国国立卫生院卒中量表评分)好于单纯手术组,其并未增加治疗风险,且出现了改善生存患者神经功能预后的趋势(P<0.08;2级证据)[5]。另一项脑梗死患者的RCT研究显示:溶栓联合低温治疗组3个月后病死率和神经功能预后[改良Rankin量表(mRS)评分]并不比常温组更好(P=0.744、0.747;2级证据)[6]。一项系统综述(7项平行对照研究,288例)显示:由于研究的异质性较大,病例数较少,故低温不能改变脑梗死患者病死率( RR=1.60,95% CI 0.93~2.78,P=0.11)和疾病严重程度(Cohen's d=–0.17,95% CI –0.42~0.08,P=0.32)的结论须慎重(2级证据)[7]

一项幕上大容积(>25 ml)脑出血(supratentorial spontaneous intracerebral hemorrhage,sICH)患者的历史对照研究显示:低温组与对照组90 d存活率分别为100%和72%;低温组14 d内脑水肿体积保持不变[1 d:(53±43) ml;14 d:(57±45) ml],而对照组显著增加[1 d:(40±28) ml;14 d:(88±47) ml],提示低温治疗可避免脑血肿周边水肿加重,从而改善预后(4级证据)[8]。队列研究显示:发病48 h内低温治疗患者mRS评分优于常温组(6个月:低温组3.00分,常温组3.87分;12个月:低温组2.25分,常温组3.40分;P<0.05),提示早期低温治疗患者可能获益(3级证据)[9]

一项重症颅脑外伤(traumatic brain injury,TBI;格拉斯哥昏迷评分3~8分)患者的系统分析(13项RCT,5项观察性研究,1 773例)显示:低温治疗后颅内压明显低于低温前,低温组颅内压明显低于常温组(1级证据)[10]。一项颅脑外伤患者的荟萃分析(18项RCT,1 851例)和证据级别评定(Grade系统)结果显示:与对照组相比,低温组病死率更低(RR=0.84,95% CI 0.72~0.98),神经功能预后更好(RR=0.81,95% CI 0.73~0.89),但3项高证据级别的RCT研究(714例)显示,低温组病死率(RR= 1.28,95% CI 0.89~1.83)和神经功能预后(RR= 1.07,95% CI 0.92~1.24)优势消失,并与复温阶段脑血管功能紊乱和肺炎相关(1级证据)[11]

一项重症颈髓损伤[cervical spinal cord injury,cSCI;脊髓损伤水平评分(American Spinal Injury Association Impairment Scale,ASIA)A级]患者的回顾性队列研究(28例)显示:低温治疗后,其ASIA评分3例恢复到B级、2例C级、1例D级,优于对照组(ASIA评分恢复到B、C、D级各1例;4级证据)[12]。一项重症急性颈髓损伤(脊髓损伤神经学分类国际标准评分A级)患者的病例对照研究(35例)显示:35.5%的患者经低温治疗预后改善,脊髓损伤神经学分类国际标准评分至少提高一级[13](4级证据)。

难治性癫痫持续状态(RSE)患者低温治疗的病例报告或病例系列报告(5例)显示:麻醉药物联合低温治疗后,癫痫发作或脑电图痫性活动明显减少或终止[14,15](5级证据)。

推荐意见:(1)因心室颤动、室性心动过速、心搏骤停而心肺复苏后的昏迷患者推荐低温治疗(A级推荐)。因不可电击复律心律而心肺复苏后的昏迷患者可予低温治疗(B级推荐)。(2)大脑半球大面积脑梗死(≥大脑中动脉供血区的2/3)患者、幕上大容积脑出血(>25 ml)患者、重症颅脑外伤(格拉斯哥昏迷评分3~8分,颅内压>20 mmHg;1 mmHg=0.133 kPa)患者、重症脊髓外伤(ASIA评分A级)患者、难治性癫痫持续状态患者因病情严重可以考虑低温治疗(C级推荐),而低温治疗的确切效果还需多个优质临床研究证实。

低温治疗操作规范
一、低温技术选择
1.全身体表低温技术:

全身体表低温为无创性低温技术,包括传统体表低温技术和新型体表低温技术。传统体表低温技术有水循环降温毯、空气循环降温毯、水垫、冰袋、冰水或酒精擦浴等。临床试验证实:传统体表低温技术简便易行,目标温度可维持在32~33 ℃[16,17],但对皮肤温度感受器刺激较大,容易导致严重寒战,故需大剂量抗寒战药物对抗[18]。此外,传统体表低温技术对温度调控的精准度有限,存在过度降温或低温不达标等问题[19]。新型体表降温技术具有温度反馈调控系统,2004年和2011年2项体表控温研究显示:与降温毯相比,新型体表降温装置(Arctic Sun Temperature Management System)对温度控制效果更好[20],平均降温速度1.1 ℃/h,维持低温目标时间可达96.7%,设备相关轻度皮肤损伤6%[21]

2.血管内低温技术:

血管内低温技术为有创低温技术(invasive techniques of cooling)。2001–2006年4项临床研究(>100例)表明:血管内低温技术安全可行、耐受性好、控温精准[22,23,24,25],且允许体表加温,从而使寒战程度减轻,抗寒战药物剂量减少,但存在有创操作风险,如出血、感染、深静脉血栓形成等。与传统体表低温技术相比,血管内低温技术达标时间明显缩短(190 min比370 min,P=0.023)[26],很少不达标或过度降温,维持温度波动更小、复温控制更好[27,28];与新型体表降温技术(Arctic Sun Temperature Management System)比较,达标(34 ℃)时间差异无统计学意义(270 min比273 min)[29]

3.生理盐水静脉输注低温技术:

已有6项临床研究(>300例)显示:缺氧性脑病、脑梗死和颅脑外伤患者在诱导低温时,用4 ℃生理盐水(约2 L,15~30 ml/kg)经外周静脉快速(30~60 min)输注,可在60 min内将核心体温降至目标温度(33~34 ℃),且耐受性良好,不增加并发症[30,31,32,33,34,35]。2014年,一项心肺复苏后昏迷患者(1 359例)RCT研究显示:尽管院前输注4 ℃生理盐水(2 L)可降低到达急诊时患者的核心体温,并缩短低温(34 ℃)达标时间,但并不提高生存率和改善神经功能预后,且转运途中再次心跳骤停和24 h肺水肿的风险增高[36]

4.头/颈表面低温技术:

2009年一项严重颅脑外伤患者(25例)头表面低温的RCT研究显示:与对照组比较,颅骨完整的头表面低温并不能降低脑实质温度,也不能提高生存率和神经功能预后[37]。2009年一项颅内压增高常规治疗失败后接受部分颅骨切除减压术患者(23例)的观察性研究显示:手术侧头表面低温(放置冰袋)可显著降低脑实质温度(从37.1 ℃降至35.2 ℃),并降低颅内压(从28 mmHg降至13 mmHg)[38]。2006年一项严重颅脑外伤患者(90例)头部联合颈部表面低温与常温治疗的研究显示:低温组患者24、48和72 h的颅内压显著低于常温组(19.14、19.72、17.29 mmHg比23.41、20.97、20.13 mmHg,P<0.01),6个月良好预后率(格拉斯哥预后评分4~5分)优于对照组(68.9%比46.7%,P<0.05)[39]。2013年一项脑卒中患者(11例,51例次)头部联合颈部表面低温的观察性研究显示:头部联合颈部表面低温虽然可降低脑实质温度,但也可导致短暂的血压和颅内压增高[40]

推荐意见:(1)优先选择具有温度反馈调控装置的新型全身体表低温技术或血管内低温技术开展低温治疗。如不具备条件,也可选择传统全身体表降温(包括冰毯、冰帽、冰袋)完成低温治疗。(2)可选择4 ℃生理盐水静脉输注的低温技术辅助诱导低温,但存在心功能不全和肺水肿风险的患者慎用。(3)可选择头表面低温技术对部分颅骨切除术后患者进行手术侧低温治疗。选择头部联合颈部低温技术降低脑实质温度,但须对血压和颅内压进行监测。

二、低温目标选择

多数低温研究的目标温度设定在32~35 ℃。2012年一项心肺复苏后昏迷患者(36例)的RCT研究显示:更低的目标温度(32 ℃)使可电击复律心肺复苏后昏迷患者获得更好的预后(6个月生存率:32 ℃组61.5%,34 ℃组15.4%,log–rank P=0.029)[41]。2013年一项心肺复苏后昏迷患者(950例)的多中心RCT研究显示:极早期(平均1 min开始初级生命支持,平均10 min开始高级生命支持,平均25 min恢复自主循环)心肺复苏后低温治疗(<4 h)患者,33 ℃与36 ℃比较,6个月死亡或不良预后率近似(RR=1.02,95% CI 0.88~1.16)[42]

推荐意见:可选择低温目标温度32~35 ℃。极早期心肺复苏后低温治疗可选择目标温度36 ℃。

三、低温时间窗选择

多数研究低温时间窗选择在发病早期,心肺复苏后昏迷患者6 h内[2],脑梗死或脑出血患者6~48 h[6,7,8,9,43],颅脑外伤患者6~72 h或者根据颅内压决定(>20 mmHg)[10,11,44]

推荐意见:心肺复苏后昏迷患者应在6 h内开始低温治疗,其他患者也应尽早(6~72 h)开始低温治疗,或根据颅内压(>20 mmHg)确定低温治疗开始时间。

四、低温时长选择

多数研究强调诱导低温时长越短越好,通常2~4 h;目标低温维持时长至少24 h,如心肺复苏后昏迷患者24 h[2,3],脑梗死患者24~72 h[7,45],脑出血患者8~10 d [8,9,43],颅脑外伤患者24~72 h[10,11,44],脊髓损伤患者36~48 h[12,46],难治性癫痫持续状态患者3~5 d[14,15]。复温速度采取主动控制,心肺复苏后昏迷患者0.25~0.50 ℃/h[2,3],脑卒中(脑梗死、脑出血)患者0.5 ℃/12~24 h或0.05~0.10 ℃/h[7,8,9,43,47,48,49],颅脑外伤患者0.25 ℃/h[10,11,44],脊髓损伤患者0.1 ℃/h[12],难治性癫痫持续状态患者<0.5 ℃/4 h[14],或根据颅内压调整复温速度。

推荐意见:诱导低温时长尽可能缩短,最好2~4 h达到目标温度。目标低温维持时长至少24 h,或根据颅内压(<20 mmHg)确定。复温速度采取主动控制,并根据疾病种类在6~72 h内缓慢达到常温。

五、体温监测技术选择

核心体温监测的"金标准"是肺动脉导管温度,其与脑部温度最接近(相关系数0.949~0.999)[50]。核心体温监测部位也可选择直肠、膀胱、鼓膜、食道、阴道等。这些部位温度与脑或肺动脉温度差异较小,膀胱温度和直肠温度略低于脑温(平均0.3~0.8 ℃和0.32~1.08 ℃),当脑温>38 ℃或<36 ℃时差异增大[51]。2013年一项心肺复苏后昏迷患者(21例)低温治疗研究显示:诱导低温阶段,最接近肺动脉温度的依次是膀胱、直肠和鼓膜温度[分别差异(–0.24±1.30)、(–0.52±1.40)和(1.11±1.53) ℃];维持低温阶段,最接近肺动脉温度的顺序仍然是膀胱、直肠和鼓膜温度[分别差异(0.06±0.79)、(–0.30±1.16)和(1.12±1.29) ℃];复温阶段,最接近肺动脉温度的是直肠、膀胱和鼓膜温度[分别差异(–0.03±1.71)、(0.08±0.86)和(0.89±1.62) ℃][52]

推荐意见:首选膀胱或直肠温度监测技术,以发挥其无创、易操作和最接近脑温的优势。

六、低温寒战控制选择
1.寒战程度评估:

寒战评估量表(bedside shivering assessment scale, BSAS)分为4级:0级,无寒战;1级,轻度寒战,仅局限于颈部和(或)胸部抖动;2级,中度寒战,上肢、颈部和胸部明显抖动;3级,重度寒战,躯干和四肢明显抖动[53]。经临床研究(22例患者和5名研究者,100次评估)证实:BSAS简单、可靠、可重复性强[54]

2.抗寒战药物应用:

常用的抗寒战药物包括:(1)镇痛剂:盐酸哌替啶可使寒战阈值下降1.3~6.1 ℃,当与丁螺环酮或右美托咪定联合应用时抗寒战作用增强[55,56];(2)镇静催眠剂:咪达唑仑或丙泊酚可使寒战阈值下降0.7 ℃[57],右美托咪定可使寒战阈值下降2.0 ℃[58];(3)神经肌肉阻滞剂:如维库溴铵。目前,最常用的抗寒战方案是盐酸哌替啶联合丁螺环酮和(或)镇静催眠剂,当寒战控制仍不理想时,加用神经肌肉阻滞剂[59]

3.体表保温措施(surface counter warming):

寒战阈值与皮肤温度呈负相关,提高皮肤温度可降低寒战阈值,减轻或去除寒战。提高皮肤温度包括体表被动保温(佩戴手套和袜套、加盖棉被等)和主动保温(提高室温、加盖升温毯、辐射热等)两种方式。血管内低温治疗时,体表保温可发挥最大作用;而体表低温治疗时,这一方法受限。有研究显示:体表保温联合抗寒战药物(盐酸哌替啶)可使寒战阈值明显下降(从35.5 ℃下降至33.8 ℃),同时因药物减量而使镇静深度变浅和呼吸抑制减轻[60]。体表主动保温可更好地提高体表温度,降低寒战阈值,减少皮肤冷刺激[61]

推荐意见:(1)应常规评估寒战程度,评估量表可选择BSAS,以指导抗寒战策略实施。(2)可选择丁螺环酮(负荷量30 mg,维持量15 mg,每8小时1次)、盐酸哌替啶(负荷量1 mg/kg,维持量25~45 mg/h)、咪达唑仑(负荷量0.1 mg/kg,维持量2~6 mg/h)等联合抗寒战方案。当寒战控制不理想或需要快速降温时,加用维库溴铵(负荷量0.03~0.05 mg/kg,维持量0.02~0.03 mg·kg–1·h–1)或罗库溴铵(负荷量0.6 mg/kg,维持量0.3~0.6 mg·kg–1·h–1)等。药物剂量调整须考虑个体差异。(3)选择体表主动保温方式,并与抗寒战药物联合。

低温并发症监测与处理
一、低温并发症监测

低温治疗期间常见的并发症包括:心律失常(窦性心动过缓、室性心动过速、心房纤颤、心室颤动)、低血压、肺炎、胰腺炎、胃肠动力不足、血小板减少、凝血时间延长、应激性高血糖、低蛋白血症、电解质异常(低钾血症、低钠血症、低镁血症、低磷血症)、下肢深静脉血栓等[17,62,63,64]。因此,需加强监测,如实时监测生理学指标(心率、心律、血压、脉搏血氧饱和度、核心体温、寒战、颅内压等),间断监测实验室指标(血常规、血气分析、肝肾功能、电解质、心肌酶、脂肪酶、淀粉酶、凝血功能等)、辅助检查指标(心电图、胸片、下肢深静脉超声等)和低温操作技术相关事件(操作意外、仪器设备运转意外等)[65]

推荐意见:根据低温治疗期间常见并发症制定监测方案,根据所选择的低温技术制定操作和意外事件监测方案。

二、低温并发症处理

2013年中国一项大面积脑梗死患者血管内低温治疗的前瞻性研究显示:部分并发症虽然发生率较高,但并不严重,也无需特殊处理,如心率和血小板轻度下降、活化部分凝血活酶时间轻度延长、胰淀粉酶和脂肪酶轻度增高等,这些指标随着复温可自行恢复;部分低温并发症则须积极处理,如低血钾、肺炎、胃肠动力障碍、应激性高血糖、低蛋白血症和下肢深静脉血栓等,这些并发症经恰当处理均可明显好转,并不影响低温治疗继续进行;对于极少数可能危害患者生命安全的并发症,如严重的心律失常、低血压和低钾血症等,经积极处理仍无法纠正的则须提前复温[63]。复温期间,颅内压反跳可导致脑疝,甚至死亡[17]。因此,必须加强颅内压监测与处理。

推荐意见:根据监测结果判断并发症及其严重程度,对低血钾症、肺炎、胃肠动力障碍、应激性高血糖、低蛋白血症和下肢深静脉血栓等常见并发症必须积极预防和处理,对严重的、难以控制的并发症须提前复温。复温过程中须加强颅内压监测,并据此调整复温速度或采取外科手术措施,避免脑疝发生。

低温治疗预后评估

常用的主要预后评估指标包括近期(出院时或1个月)死亡率、远期(3~12个月)死亡率、生存曲线、格拉斯哥预后评分、Barthel指数、mRS和脑功能分级等。常用的次要预后评估指标包括ICU停留时间、住院时间、机械通气时间和并发症发生率等。

推荐意见:低温治疗后需进行短期(≤1个月)和长期(≥3个月)预后评估,评估指标包括主要评估指标(病死率、神经功能残疾、生活质量)和次要评估指标(并发症、住院时间、住院费用等)。

展望

低温是重症脑损伤患者的重要治疗手段,具有一定的降低颅内压作用和神经保护作用,并影响患者的生存率和生存质量,临床研究和临床应用前景广阔。对低温过程中尚未很好解决的问题,还须不断地改进与完善。

执笔 宿英英、黄旭升、潘速跃、彭斌、江文

中华医学会神经病学分会神经重症协作组专家和相关领域专家(按姓氏拼音顺序排列)

中华医学会神经病学分会神经重症协作组专家和相关领域专家(按姓氏拼音顺序排列) 曹秉振、崔丽英、丁里、范琳琳、韩杰、黄卫、黄旭升、胡颖红、贾建平、江文、李力、李连弟、刘丽萍、倪俊、牛小媛、潘速跃、彭斌、蒲传强、石向群、宿英英、谭红、田飞、田林郁、王芙蓉、王学峰、吴永明、杨渝、袁军、张乐、张猛、张旭、张艳、周东、朱沂

致      谢

志谢 本文撰写过程中,相关领域具有丰富经验的神经重症专家完成了初稿、讨论稿和修改稿的反复讨论、修订与完善,在此一并表示诚挚的感谢

参考文献
[1]
Centre for Evidence-Based Medicine. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence[EB/OL].[ 2011-09-20].[ 2014-01-27]. http://www.cebm.net/ocebm-levels-of-evidence/.
[2]
ArrichJ, HolzerM, HavelC, et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation[J]. Cochrane Database Syst Rev, 2012, 9: CD004128.
[3]
KimYM, YimHW, JeongSH, et al. Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms?: A systematic review and meta-analysis of randomized and non-randomized studies[J]. Resuscitation, 2012, 83( 2): 188196.
[4]
PeberdyMA, CallawayCW, NeumarRW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2010, 122( 18 Suppl 3): S768S786.
[5]
ElsT, OehmE, VoigtS, et al. Safety and therapeutical benefit of hemicraniectomy combined with mild hypothermia in comparison with hemicraniectomy alone in patients with malignant ischemic stroke[J]. Cerebrovasc Dis, 2006, 21( 1- 2): 7985.
[6]
HemmenTM, RamanR, GulumaKZ, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results[J]. Stroke, 2010, 41( 10): 22652270.
[7]
LakhanSE, PamplonaF. Application of mild therapeutic hypothermia on stroke: a systematic review and meta-analysis[J]. Stroke Res Treat, 2012, 2012: 295906.
[8]
KollmarR, StaykovD, DorflerA, et al. Hypothermia reduces perihemorrhagic edema after intracerebral hemorrhage[J]. Stroke, 2010, 41( 8): 16841689.
[9]
AbdullahJM, HusinA. Intravascular hypothermia for acute hemorrhagic stroke: a pilot study[J]. Acta Neurochir Suppl, 2011, 111: 421424.
[10]
SadakaF, VeremakisC. Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review[J]. Brain Inj, 2012, 26( 7- 8): 899908.
[11]
GeorgiouAP, ManaraAR. Role of therapeutic hypothermia in improving outcome after traumatic brain injury: a systematic review[J]. Br J Anaesth, 2013, 110( 3): 357367.
[12]
LeviAD, CasellaG, GreenB A, et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury[J]. Neurosurgery, 2010, 66( 4): 670677.
[13]
DididzeM, GreenBA, DietrichWD, et al. Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study[J]. Spinal Cord, 2013, 51( 5): 395400.
[14]
CorryJJ, DharR, MurphyT, et al. Hypothermia for refractory status epilepticus[J]. Neurocrit Care, 2008, 9( 2): 189197.
[15]
de PontAC, de JagerCP, van den BerghWM, et al. Recovery from near drowning and postanoxic status epilepticus with controlled hypothermia[J]. Neth J Med, 2011, 69( 4): 196197.
[16]
FelbergRA, KriegerDW, ChuangR, et al. Hypothermia after cardiac arrest: feasibility and safety of an external cooling protocol[J]. Circulation, 2001, 104( 15): 17991804.
[17]
SchwabS, GeorgiadisD, BerrouschotJ, et al. Feasibility and safety of moderate hypothermia after massive hemispheric infarction[J]. Stroke, 2001, 32( 9): 20332035.
[18]
LazzaroMA, PrabhakaranS. Induced hypothermia in acute ischemic stroke[J]. Expert Opin Investig Drugs, 2008, 17( 8): 11611174.
[19]
KriegerDW, De GeorgiaMA, Abou-CheblA, et al. Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke[J]. Stroke, 2001, 32( 8): 18471854.
[20]
MayerSA, KowalskiRG, PresciuttiM, et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients[J]. Crit Care Med, 2004, 32( 12): 25082515.
[21]
JarrahS, DziodzioJ, LordC, et al. Surface cooling after cardiac arrest: effectiveness, skin safety, and adverse events in routine clinical practice[J]. Neurocrit Care, 2011, 14( 3): 382388.
[22]
GeorgiadisD, SchwarzS, KollmarR, et al. Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach[J]. Stroke, 2001, 32( 11): 25502553.
[23]
De GeorgiaMA, KriegerDW, Abou-CheblA, et al. Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling[J]. Neurology, 2004, 63( 2): 312317.
[24]
Al-SenaniFM, GraffagninoC, GrottaJC, et al. A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest[J]. Resuscitation, 2004, 62( 2): 143150.
[25]
HolzerM, MullnerM, SterzF, et al. Efficacy and safety of endovascular cooling after cardiac arrest: cohort study and Bayesian approach[J]. Stroke, 2006, 37( 7): 17921797.
[26]
KellerE, ImhofHG, GasserS, et al. Endovascular cooling with heat exchange catheters: a new method to induce and maintain hypothermia[J]. Intensive Care Med, 2003, 29( 6): 939943.
[27]
HinzJ, RosmusM, PopovA, et al. Effectiveness of an intravascular cooling method compared with a conventional cooling technique in neurologic patients[J]. J Neurosurg Anesthesiol, 2007, 19( 2): 130135.
[28]
GilliesMA, PrattR, WhiteleyC, et al. Therapeutic hypothermia after cardiac arrest: a retrospective comparison of surface and endovascular cooling techniques[J]. Resuscitation, 2010, 81( 9): 11171122.
[29]
TomteO, DraegniT, MangschauA, et al. A comparison of intravascular and surface cooling techniques in comatose cardiac arrest survivors[J]. Crit Care Med, 2011, 39( 3): 443449.
[30]
PoldermanKH, RijnsburgerER, PeerdemanSM, et al. Induction of hypothermia in patients with various types of neurologic injury with use of large volumes of ice-cold intravenous fluid[J]. Crit Care Med, 2005, 33( 12): 27442751.
[31]
KimF, OlsufkaM, CarlbomD, et al. Pilot study of rapid infusion of 2 L of 4 degrees C normal saline for induction of mild hypothermia in hospitalized, comatose survivors of out-of-hospital cardiac arrest[J]. Circulation, 2005, 112( 5): 715719.
[32]
KimF, OlsufkaM, LongstrethWT, et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline[J]. Circulation, 2007, 115( 24): 30643070.
[33]
LarssonIM, WallinE, RubertssonS. Cold saline infusion and ice packs alone are effective in inducing and maintaining therapeutic hypothermia after cardiac arrest[J]. Resuscitation, 2010, 81( 1): 1519.
[34]
KollmarR, SchellingerPD, SteiglederT, et al. Ice-cold saline for the induction of mild hypothermia in patients with acute ischemic stroke: a pilot study[J]. Stroke, 2009, 40( 5): 19071909.
[35]
SkulecR, TruhlarA, SeblovaJ, et al. Pre-hospital cooling of patients following cardiac arrest is effective using even low volumes of cold saline[J]. Crit Care, 2010, 14( 6): R231.
[36]
KimF, NicholG, MaynardC, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial[J]. JAMA, 2014, 311( 1): 4552.
[37]
HarrisOA, MuhCR, SurlesMC, et al. Discrete cerebral hypothermia in the management of traumatic brain injury: a randomized controlled trial[J]. J Neurosurg, 2009, 110( 6): 12561264.
[38]
ForteLV, PelusoCM, PrandiniMN, et al. Regional cooling for reducing brain temperature and intracranial pressure[J]. Arq Neuropsiquiatr, 2009, 67( 2B): 480487.
[39]
LiuWG, QiuWS, ZhangY, et al. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study[J]. J Int Med Res, 2006, 34( 1): 5864.
[40]
PoliS, PurruckerJ, PriglingerM, et al. Induction of cooling with a passive head and neck cooling device: effects on brain temperature after stroke[J]. Stroke, 2013, 44( 3): 708713.
[41]
Lopez-De-SaE, ReyJR, ArmadaE, et al. Hypothermia in comatose survivors from out-of-hospital cardiac arrest: pilot trial comparing 2 levels of target temperature[J]. Circulation, 2012, 126( 24): 28262833.
[42]
NielsenN, WetterslevJ, CronbergT, et al. Targeted temperature management at 33 ℃ versus 36 ℃ after cardiac arrest[J]. N Engl J Med, 2013, 369( 23): 21972206.
[43]
KollmarR, JuettlerE, HuttnerHB, et al. Cooling in intracerebral hemorrhage (CINCH) trial: protocol of a randomized German-Austrian clinical trial[J]. Int J Stroke, 2012, 7( 2): 168172.
[44]
AndrewsPJ, SinclairHL, BattisonCG, et al. European society of intensive care medicine study of therapeutic hypothermia (32-35 ℃) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial)[J]. Trials, 2011, 12: 8.
[45]
MourandI, EscuretE, HeroumC, et al. Feasibility of hypothermia beyond 3 weeks in severe ischemic stroke: an open pilot study using γ-hydroxybutyrate[J]. J Neurol Sci, 2012, 316( 1- 2): 104107.
[46]
CappuccinoA, BissonLJ, CarpenterB, et al. The use of systemic hypothermia for the treatment of an acute cervical spinal cord injury in a professional football player[J]. Spine (Phila Pa 1976), 2010, 35( 2): E57E62.
[47]
GasserS, KhanN, YonekawaY, et al. Long-term hypothermia in patients with severe brain edema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications[J]. J Neurosurg Anesthesiol, 2003, 15( 3): 240248.
[48]
AneiR, SakaiH, IiharaK, et al. Effectiveness of brain hypothermia treatment in patients with severe subarachnoid hemorrhage: comparisons at a single facility[J]. Neurol Med Chir (Tokyo), 2010, 50( 10): 879883.
[49]
NagaoS, IrieK, KawaiN, et al. The use of mild hypothermia for patients with severe vasospasm: a preliminary report[J]. J Clin Neurosci, 2003, 10( 2): 208212.
[50]
AkataT, SetoguchiH, ShirozuK, et al. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction[J]. J Thorac Cardiovasc Surg, 2007, 133( 6): 15591565.
[51]
HenkerRA, BrownSD, MarionDW. Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury[J]. Neurosurgery, 1998, 42( 5): 10711075.
[52]
ShinJ, KimJ, SongK, et al. Core temperature measurement in therapeutic hypothermia according to different phases: comparison of bladder, rectal, and tympanic versus pulmonary artery methods[J]. Resuscitation, 2013, 84( 6): 810817.
[53]
BadjatiaN, StrongilisE, GordonE, et al. Metabolic impact of shivering during therapeutic temperature modulation: the Bedside Shivering Assessment Scale[J]. Stroke, 2008, 39( 12): 32423247.
[54]
OlsonDM, GrissomJL, WilliamsonRA, et al. Interrater reliability of the bedside shivering assessment scale[J]. Am J Crit Care, 2013, 22( 1): 7074.
[55]
DoufasAG, LinCM, SulemanMI, et al. Dexmedetomidine and meperidine additively reduce the shivering threshold in humans[J]. Stroke, 2003, 34( 5): 12181223.
[56]
MokhtaraniM, MahgoubAN, MoriokaN, et al. Buspirone and meperidine synergistically reduce the shivering threshold[J]. Anesth Analg, 2001, 93( 5): 12331239.
[57]
MatsukawaT, KurzA, SesslerDI, et al. Propofol linearly reduces the vasoconstriction and shivering thresholds[J]. Anesthesiology, 1995, 82( 5): 11691180.
[58]
LenhardtR, Orhan-SungurM, KomatsuR, et al. Suppression of shivering during hypothermia using a novel drug combination in healthy volunteers[J]. Anesthesiology, 2009, 111( 1): 110115.
[59]
宿英英, 范琳琳, 叶红, . 大面积脑梗死患者血管内低温治疗的寒战与抗寒战分析[J]. 中国脑血管病杂志, 2013, 10( 6): 285290.
[60]
KimbergerO, AliSZ, MarkstallerM, et al. Meperidine and skin surface warming additively reduce the shivering threshold: a volunteer study[J]. Crit Care, 2007, 11( 1): R29.
[61]
AlfonsiP, NourredineKE, AdamF, et al. Effect of postoperative skin-surface warming on oxygen consumption and the shivering threshold[J]. Anaesthesia, 2003, 58( 12): 12281234.
[62]
NielsenN, SundeK, HovdenesJ, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia[J]. Crit Care Med, 2011, 39( 1): 5764.
[63]
宿英英, 范琳琳, 张运周, . 大面积脑梗死患者血管内低温治疗的安全性分析[J]. 中国脑血管病杂志, 2013, 10( 6): 291297.
[64]
GeorgiadisD, SchwarzS, AschoffA, et al. Hemicraniectomy and moderate hypothermia in patients with severe ischemic stroke[J]. Stroke, 2002, 33( 6): 15841588.
[65]
宿英英, 范琳琳, 叶红, . 大面积脑梗死患者血管内低温技术的可操作性分析[J]. 中国脑血管病杂志, 2013, 10( 11): 577583.
X
选择其他平台 >>
分享到