中国胰腺癌病理取材及诊断报告规范循证学指南

中国医师协会胰腺病学专业委员会 国家消化系统疾病临床医学研究中心(上海)
Professional Committee of Pancreatic Diseases, Chinese Medical Doctor Association National Clinical Research Center for Digestive Diseases (Shanghai)
李兆申,海军军医大学第一附属医院消化内科,上海 200433,Email:zhsl@vip.163.com 郑建明,海军军医大学第一附属医院病理科,上海 200433,Email: jmzheng1962@163.com 金钢,海军军医大学第一附属医院肝胆胰脾外科,上海 200433,Email: jingang@smmu.edu.cn 邵成伟,海军军医大学第一附属医院放射诊断科,上海 200433,Email: cwshao@sina.com 李汛,兰州大学第一医院普外科,兰州 730000,Email:lxdr21@126.com Li Zhaoshen, Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China, Email: zhsl@vip.163.com; Zheng Jianming, Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China, Email: jmzheng1962@163.com; Jin Gang, Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China, Email: jingang@smmu.edu.cn; Shao Chengwei, Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China, Email: cwshao@sina.com; Li Xun, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China, Email: lxdr21@126.com

成人胰腺肿瘤中约90%为胰腺导管腺癌及其变异亚型[1,2],手术依然是唯一可能治愈的手段[3]。术后病理标本中肿瘤浸润范围、切缘状态等各项病理学指标的评估是评判肿瘤预后的最关键因素,而完成这一精准评估的前提是对胰腺切除标本精准全面的取材和规范化病理报告。这不仅有助于临床医师对患者进行个体化、高质量的管理,而且可以为临床研究提供更准确和详尽的病理数据。此外,新辅助治疗引起的肿瘤退缩已被证明可提高肿瘤可切除性和(或)切缘阴性(R0切除)的概率,进而提高患者无病生存率和总生存率[4,5,6,7,8,9,10],因此,经过新辅助治疗的胰腺癌手术标本也越来越多。然而到目前为止,国内外尚无为新辅助治疗后胰腺癌手术切除标本制定规范化的病理学检查和报告指南,这也导致不同医疗机构之间对肿瘤退缩和切缘状态等病理学指标评估的差异[11,12]

为规范我国胰腺癌病理诊断,由中国医师协会胰腺病专业委员会、国家消化病临床医学研究中心(上海)和《中华胰腺病杂志》牵头,组织病理学、外科学、内科学、影像医学、循证医学等领域专家,遵循《世界卫生组织指南制定手册》[13]、美国医学科学院提出的临床实践指南的定义[14]、中华医学会发布的《中国制订/修订临床诊疗指南的指导原则(2022版)》[15]以及世界卫生组织颁布的《国际疾病分类(第11版)》[16],参考指南研究与评价工具(appraisal of guidelines for research and evaluation, AGREE Ⅱ)[17]和国际实践指南报告标准(reporting items for practice guidelines in healthcare, RIGHT)[18],依据已发表的文献,广泛征询专家意见,采用改良Delphi法,通过多轮投票与集体讨论的方式,针对胰腺癌病理取材及诊断报告中的关键问题,共形成11条推荐意见。由海军军医大学第一附属医院病理科成立指南起草小组对指南进行起草和修订,最终制定了《中国胰腺癌病理取材及诊断报告规范循证学指南》。本指南已在国际实践指南注册平台(http://www.guidelinesregistry.cn/)注册(PREPARE-2023CN491)。本指南基于推荐意见分级的评估、制定及评价(grading of recommendation assessment, development and evaluation, GRADE)方法[19],将证据质量分为4级,依次为高(A)、中(B)、低(C)、非常低(D)。推荐意见分为强、弱2个级别。

一、胰腺手术标本的切缘如何定义?

推荐意见1:胰十二指肠切除标本手术切缘包括消化道远近端切缘、胰腺切缘、肠系膜上动脉(superior mesenteric artery, SMA)切缘、胆管或肝管切缘;环周表面包括前表面和后表面及肠系膜上静脉(superior mesenteric vein, SMV)沟表面。胰体尾切除标本手术切缘包括胰腺切缘及环周的前、后表面。SMV血管沟及前、后表面不认为是真正意义上的手术切缘[20,21,22,23]。对所有切缘及表面的取材推荐整个面广泛全取材。

证据质量:中  推荐强度:强

规范胰十二指肠及胰体尾手术切除标本的切缘命名,明确真正意义上手术切缘及相应环周表面的定义,并规范切缘取材方式,对于更好地评判切缘状态并提供预后信息至关重要[20,21]。手术切缘的评估主要基于大体观察和显微镜下验证。考虑肿瘤累及切缘可能在大体上难以明确,因此切缘面广泛取材对于判定切缘状态非常重要。

1.胰十二指肠切除标本:

胰十二指肠切除标本切缘(图1)中,SMA(腹膜后或钩突)切缘是最重要的切缘,是与SMA直接接触的3~4 cm范围的软组织。这个区域外周神经丰富且紧邻SMA,肿瘤的局部复发也多见于瘤床的钩突边缘区,因此SMA切缘状态对于评估预后非常重要[23]。本指南推荐将SMA切缘涂色,并垂直于涂色面对整个平面进行全取材并行组织学检查,有助于更清晰地显示肿瘤距切缘最近的距离。

10.3760/cma.j.cn115667-20240307-00051.F001 胰十二指肠切除标本切缘(墨汁涂色)。胰腺断端(黄色)、前表面(橙色)、后表面(黑色)、SMV沟(蓝色)和SMA切缘(红色)。SMV为肠系膜上静脉;SMA为肠系膜上动脉

胰颈部(断端)切缘是胰腺断端整个面的切缘,即沿着胰腺横断平面全取材,断面朝下放置,如果切片中看到癌组织,则判定为R1(0 mm)[20,21]。但这一切缘取材及判定方式与目前的"1 mm"原则有冲突,所以日常工作中也可以参照SMA切缘取材的方式。如果肿瘤肉眼上离切缘很近(≤1 cm),可对整个切缘进行涂色,然后面向涂色面作垂直切面,且所有带涂色切缘的组织均进行组织学检查,并以毫米级的精准度准确记录肿瘤与此切缘的距离。

胆管或肝管切缘是胆管断端的整个断面,即沿着胆管断面全取材,断面朝下放置,如果切片中看到癌组织,则判定为R1(0 mm)[20,21]。也可参照SMA切缘取材方式行垂直切缘取材。

消化道远近端切缘是消化道离断缘的整个断面,即沿着消化管断面全取材,断面朝下放置,这样第一张切片显示的为真正的切缘,如果切片中看到癌组织,则判定为R1(0 mm)[20,21]。也可参照SMA切缘取材方式行垂直切缘取材。

门静脉切缘及肿瘤侵犯门静脉管壁的深度与预后相关[24],如果手术标本中附带部分或完整的门静脉,需特别标注。门静脉远近端切缘需要取材。取肿瘤侵犯门静脉的组织块时,应尽量包含门静脉的全层。

其他环周表面中后表面(不包括肠系膜上动脉切缘)是肠系膜上动脉切缘至胰十二指肠沟之间整个胰头后方的疏松结缔组织。后表面的取材是完整的一个面,而不是局部一个垂直面,这样有助于更清晰地明确肿瘤距切缘最近的距离。这一表面有时与SMA切缘在同一个组织块,因此,各个切缘、表面最好用不同颜色墨汁标记。SMV沟是一个血管沟的光滑面或压迹(也被称为门静脉沟切缘),这是胰头后内侧的一个平滑的沟状平面,其上是SMV。这一表面的取材也是完整的一个面,而不是局部一个垂直面,可参照SMA切缘取材的方式。前表面定义为从SMV切缘延伸至胰十二肠沟前方的整个胰头前方的区域,这并非真正意义上手术切缘,但如果肿瘤侵犯这一表面,提示与肿瘤局部复发及患者较短的生存期相关,因此建议进行取材[25,26,27,28,29,30]。部分患者前表面与其他手术切除的组织结构粘连,应将这些结构视为附加的环周缘,并报告与肿瘤最近的距离。

以上所有切缘和胰腺表面组织构成胰头标本的环周面。对于各个切缘和表面使用指定颜色的墨汁进行涂色有助于显微镜下识别[20]。大体标本需要记录肿瘤与最近切缘或表面的距离,并于显微镜下明确。

2.胰体尾切除标本:

胰体尾切除标本切缘(图2)中,如果肿瘤肉眼上离近端胰腺(断端)切缘很近(≤1 cm),整个切缘可以涂色,然后面向涂色面行垂直切面,所有带涂色切缘的组织均进行组织学检查,并以毫米级的精准度去准确记录肿瘤与此切缘的距离。如果肿瘤与切缘距离较远,可采用平行切缘取材方式。

10.3760/cma.j.cn115667-20240307-00051.F002 胰体尾切除标本切缘(墨汁涂色)。胰腺断端(橙色)、前表面(黑色)以及后表面(黄色)

前表面切缘反映了肿瘤与胰腺前缘软组织的关系,离肿瘤最近平面的组织需要取材以明确有无肿瘤侵犯,确切的取材数目取决于肉眼上观察的肿瘤浸润范围。

后表面切缘反映了肿瘤与胰腺后缘软组织的关系,离肿瘤最近平面的组织需要取材以明确有无肿瘤侵犯,确切的取材数目取决于肉眼上观察的肿瘤浸润范围。

胰体尾切除标本需要评估胰颈断端及胰周覆盖软组织被肿瘤累及的情况。另外脾血管及脾脏的累及情况也应记录。脾静脉及脾动脉断端切缘也应取材并进行组织学检查。需记录肿瘤与最近切缘或表面的距离,并在显微镜下明确。

二、胰腺手术标本的取材方式如何选择?

推荐意见2:胰十二指肠切除标本推荐使用垂直于十二指肠长轴的连续横断面取材方式,这一取材方式只针对胰头癌,不推荐用于壶腹部及胆总管癌。胰体尾切除标本推荐使用沿肿瘤最大径做前后向连续切面(可垂直或平行于主胰管)。新辅助治疗后胰腺癌标本评估完全反应时推荐全取材。

证据质量:中  推荐强度:强

目前有多种关于胰十二指肠切除标本的取材方式[22,30,31,32,33,34],但本指南优先推荐垂直于十二指肠长轴进行连续平行剖面[30]图3)。这种取材方式容易操作,无需打开胆总管及主胰管,且能在同一平面展示重要的解剖结构(如壶腹部、胆总管及主胰管),因而常被一些癌症中心作为共识推荐[35,36]。该取材方式通常将胰十二指肠切除标本解剖成8~10个剖面,可详细检查肿瘤情况及其与周围关键解剖结构及切缘的关系[31]。其最大的优势在于不仅可以从3个维度测量肿瘤的范围,还可以在每个剖面详细检查肿瘤与各个切缘的关系,准确判断肿瘤距切缘的距离[37,38,39,40]

10.3760/cma.j.cn115667-20240307-00051.F003 胰十二指肠切除标本取材方式示意图。SMA为肠系膜上动脉;SMV为肠系膜上静脉

胰腺远端切除标本中,脾动脉和脾静脉沿胰腺后上缘走行,据此可以明确前、后缘并墨汁染色,有助于标本定位。整个标本可做前后向连续切面,可平行于主胰管(4A)或垂直于主胰管(4B)。全胰切除标本中,胰头部可按横断面,即垂直于十二指肠长轴连续切面,而体尾部可平行于主胰管或垂直于主胰管。

10.3760/cma.j.cn115667-20240307-00051.F004 胰体尾切除标本取材方式示意图。4A平行于主胰管行连续平行剖面;4B垂直于主胰管行连续平行剖面

标本解剖前,先取胰腺断端、胆总管断端、消化管两断端切缘。组织块需包含肿瘤累及的解剖学结构(如十二指肠、壶腹部、胆总管及胰周软组织等),同样也需包含肿瘤与各个相邻切缘的关系。但肉眼通常很难准确辨认肿瘤组织浸润范围,因此需对肿瘤及相邻的切缘广泛取材[38,41,42]。如果条件允许,可使用大组织块包埋,有助于明确肿瘤与周围组织结构及切缘的关系,并有助于更精准测量肿瘤的最大径[35]。新辅助治疗后肿瘤大部分可被纤维组织所取代,大体标本很难区分肿瘤、肿瘤退缩引起的纤维化区及梗阻性胰腺炎的纤维化区[43]。为了精准评估残存肿瘤的范围及其与切缘的关系,广泛取材是必须的。特别对于新辅助治疗后肿瘤完全反应的评判,必须整个胰腺全取材[35,44]。此外,大体标本连续切面图像的保存(图5)可有助于后续多学科讨论中对于肿瘤来源等信息的明确。

10.3760/cma.j.cn115667-20240307-00051.F005 胰腺大体标本连续切面拍照。CBD为胆总管;PD为胰管
三、胰腺癌组织学类型及分化程度如何评估?

推荐意见3:胰腺癌组织学类型推荐使用世界卫生组织(World Health Organization, WHO)第5版胰腺肿瘤分类,胰腺导管腺癌组织学分化程度推荐使用美国病理学家协会(College of American Pathologists,CAP)评估标准。当胰腺导管腺癌合并前驱病变时,需明确导管腺癌是否由前驱病变进展而来,并明确组织学亚型及分化。

证据质量:低  推荐强度:弱

本指南所述胰腺癌主要包括胰腺导管腺癌、腺泡细胞癌及前驱病变进展而来的癌,WHO第5版消化系统肿瘤分类对这几类胰腺癌的组织学类型作出了详细的阐述[1]

胰腺导管腺癌及其特殊亚型约占胰腺恶性肿瘤90%,而腺泡细胞癌占成人胰腺恶性肿瘤不足2%。不同胰腺导管腺癌特殊亚型在生物学行为、预后和治疗策略方面均有不同,因此对其正确诊断至关重要。当胰腺导管腺癌背景中存在导管内乳头状黏液性肿瘤(intraductal papillary mucinous neoplasm,IPMN)、导管内嗜酸细胞性乳头状肿瘤(intraductal oncocytic papillary neoplasm,IOPN)、导管内管状乳头状肿瘤(intraductal tubulopapillary neoplasm,ITPN)、黏液性囊性肿瘤(mucinous cystic neoplasm, MCN)这些前驱病变时,诊断中一个非常关键的要点就是明确浸润性癌的成分是否为导管内肿瘤(IPMN、ITPN、IOPN)或者MCN进展而来[45,46]。MCN进展而来的导管腺癌5年生存率要明显优于非MCN进展而来的导管腺癌[45,46];无论是IPMN进展而来的导管腺癌或IPMN合并导管腺癌,相较普通型导管腺癌均有更好的预后,且临床也更易早期诊断。在浸润性癌亚型方面,IPMN来源的胶样癌预后优于IPMN来源的导管腺癌[47,48,49,50],IOPN进展而来的嗜酸细胞癌是所有亚型中预后最好的,5年疾病特异性生存率达100%[48,51,52];ITPN伴浸润性癌患者5年生存率约71%,明显高于普通型导管腺癌[53,54,55,56]。其他少见亚型包括透明细胞型[57,58,59]、嗜酸细胞亚型[60]、纤毛细胞型[61]、富于空泡型[62]、肠型[63]、微腺型[64]、囊性型[65]、大导管型[66]、囊性乳头状型[67]、黏液表皮样癌[68]及非黏液性糖原缺乏性囊腺癌[69],且随着分子病理学的进展,近年还报道了伴SMARCB1/INI1缺失相关的胰腺癌[70,71],由于这些肿瘤类型少见,研究资料有限,其临床病理学意义有待更深入的研究。

组织学分化对于胰腺导管腺癌具有很好的预后评判意义[72],WHO[1]及CAP[73]都给出了相应的评估标准,相互之间一致性很高,也有相似的预测价值[74]。CAP相较于WHO更为简单,无需评估黏液产生及核分裂,故应用更广泛,因此本指南对于胰腺导管腺癌的组织学分化也推荐使用CAP系统:1级,>95%的肿瘤形成腺样结构;2级,50%~95%的肿瘤形成腺样结构;3级,<50%的肿瘤形成腺样结构。

四、淋巴管或血管侵犯如何评估?

推荐意见4:淋巴管或血管侵犯应单独记录,对于已命名的血管(腹腔干、肠系膜上动脉、肝总动脉、门静脉、肠系膜上静脉、脾动脉、脾静脉)应记录其侵犯深度(外膜、中膜、内膜)。

证据质量:中  推荐强度:强

无论胰腺癌患者是否接受新辅助治疗,淋巴管、血管侵犯均是不良预后的评价指标[75,76,77]。根据美国癌症联合会(American Joint Committee on Cancer,AJCC)/国际抗癌联盟(The Union for international Cancer Control,UICC) TNM分期第8版及美国国立综合癌症网络(The National Comprehensive Cancer Network,NCCN)指南,这些病理学特征均应被单独记录。

对于肿瘤内小的淋巴管及静脉,常规切片中很难区分,出现伴随的小动脉可帮助识别静脉侵犯,特殊染色特别是弹力纤维染色或CD31、CD34和D2-40免疫组织化学标记有助于鉴别诊断。同时,免疫组织化学染色或特殊染色也可识别那些误认为胰腺上皮内瘤变(pancreatic intraepithelial neoplasia, PanIN)的脉管侵犯病变。大的已命名的血管侵犯对于胰腺癌患者术后的复发和5年生存期的预测具有重要价值,尤其是影响TNM分期的腹腔干、肠系膜上动脉及肝总动脉要明确标明有无侵犯并标注侵犯深度[23];对于还未纳入T分期的门静脉、SMV、脾动脉、脾静脉侵犯,也建议记录侵犯深度,因为其对肿瘤转移复发及预后的预测仍有一定价值[24,78,79,80,81,82,83,84,85]

五、外周神经侵犯如何评估?

推荐意见5:推荐报告外周神经侵犯情况,并建议区分胰内神经侵犯和胰周神经侵犯。

证据质量:低  推荐强度:弱

外周神经侵犯是指肿瘤细胞至少侵犯了神经纤维3层结构中的任意一层或肿瘤细胞包绕神经纤维1/3以上[86]。外周神经侵犯是胰腺癌重要的组织学特征,同时也是胰腺癌术后复发及预后不良的重要因素[77,87,88,89,90,91]。胰腺外周神经分布丰富,分为胰腺被膜以内的胰内神经和被膜以外的胰周神经。胰内神经侵犯是影响术后胰腺癌患者预后及复发的重要因素[88,92,93],且胰内神经侵犯与胰周神经侵犯具有明显的相关性[94],胰内神经侵犯导致癌细胞沿神经向胰周神经及软组织侵犯[95,96],胰周神经侵犯的患者更易复发且预后更差[97,98,99]。外周神经侵犯在经过新辅助治疗的患者中也是一个不良预后指标[100,101]。因此本指南推荐将胰内神经侵犯及胰周神经侵犯分别记录。

六、胰腺癌R<sub>1</sub>切缘如何评估?

推荐意见6:R1定义为显微镜下肿瘤距切缘距离≤1 mm。

证据质量:非常低  推荐强度:弱

虽然目前国际各大指南对R状态的评估主要基于对SMA切缘、胰腺切缘、胆管切缘、消化道远近端切缘这些真正手术切缘的评估[20,21,73,102],但均推荐对切除标本的所有表面进行评估,包括胰腺前表面、后缘和SMV血管沟表面[21,102],因为肿瘤累及这些表面增加了局部肿瘤复发的风险,并与预后相关[26,40,103,104,105,106,107,108,109]。较多基于全面详细病理检查方案的研究发现,通过评价所有表面提示较高R1率(>70%),并与生存相关[27,34,38,39,110,111,112,113,114]。因此,本指南推荐对于所有切缘及表面均应进行仔细、全面、详尽地取材,并在显微镜下明确肿瘤距切缘或表面最近的距离。

胰腺癌R0与R1的界定仍然存在争议。该定义最初来源于直肠癌评估方案,发现肿瘤距切缘≤1 mm可预测局部复发并提示更差的生存期[115,116,117,118,119]。考虑胰腺导管腺癌更为分散的生长模式,有研究提示更大的距离(如1.5 mm)预测预后的价值更高[119,120,121],但并未在诊断实践中应用。另外从解剖学上来说胰腺的前表面是腹膜覆盖组织,因此前表面的受累应定义为表面的突破,也就是0 mm[21,122]

少数情况下,切缘1 mm以内的胰腺实质及间质纤维、脂肪组织内未见明确的肿瘤,而在这一范围内的淋巴结、淋巴管、血管及外周神经周围查见肿瘤,此时是否将切缘定义为R1,目前尚无循证医学证据去阐释。UICC的TNM分期中提出,如果在切缘1 mm范围内的脉管腔内查见肿瘤细胞,此时归为R0,而当肿瘤贴附于脉管壁或侵犯脉管壁时,此时归为R1[110]。对切缘1 mm以内淋巴结及外周神经受累如何定义,目前缺乏证据,建议在报告中记录说明。

另外,R1≤1 mm的定义仅适用于胰腺导管腺癌。没有证据表明这一定义也适用于腺泡细胞癌,因为腺泡细胞癌与胰腺导管腺癌不同,通常不呈分散的生长模式,因此建议记录肿瘤距切缘最近的距离。

接受新辅助治疗患者R1切缘距离的界定目前仍缺乏共识[44]。首先,在新辅助治疗后,点取样可能会导致切缘评估出现假阴性结果。其次,判定R1的肿瘤细胞与切缘之间距离也存在争议。有研究提出肿瘤距切缘最近距离>2 mm提示更好的预后[123,124]。因此,对于新辅助治疗后的手术切除标本,本指南推荐采用标本全取材和大组织病理切片对切缘进行全面的评估,并详细记录残留病灶距离切缘的最近距离。

七、T分期如何评估?

推荐意见7:T分期参照AJCC/UICC第8版分期系统。IPMN、IOPN、ITPN、MCN伴浸润性癌,T1~T3分期评估标准以浸润灶的最大径为准,而非整个病变的大小。新辅助治疗后胰腺手术切除标本推荐采用大切片取材方式并记录测量肿瘤大小方法。

证据质量:低  推荐强度:弱

T分期参照AJCC/UICC第8版分期系统[23],腺泡细胞癌分期也参照胰腺导管腺癌。"m"代表存在多个原发肿瘤,"r"代表复发性肿瘤,"y"代表经过新辅助治疗。

肿瘤大小是肿瘤非常重要的特征,反映了原发肿瘤负荷,因此是患者预后最强的预测因子[125]。由于胰腺癌的生长方式高度分散、胰腺实质萎缩和纤维化,肉眼很难明确真正的肿瘤边界[119],目前大多数指南推荐使用肉眼测量肿瘤大小并在显微镜下确认[11,35,73,126,127]。T分期以最大肿瘤直径作为评估标准。相较于肿瘤侵犯胰周的范围,肿瘤的大小可更好地进行预后分层[108,128,129,130,131]。根据肿瘤最大径分为T1(最大径≤2 cm)、T2(最大径>2 cm且≤4 cm)、T3(最大径>4 cm),T4评判标准为肿瘤侵犯肠系膜上动脉或腹腔干或肝总动脉,不论肿瘤大小[23]。T1还可进一步分为T1a(最大径≤0.5 cm)、T1b(最大径>0.5 cm且<1 cm)、T1c(最大径≥1 cm且≤2 cm)。Tis包括PanIN3、IPMN伴上皮高级别异型增生、ITPN伴上皮高级别异型增生、IOPN伴上皮高级别异型增生及MCN伴上皮高级别异型增生。

T分期需要注意的是,如果存在1个以上肿瘤,应详细记录肿瘤的个数、位置及每个肿瘤的大小,但这只适用于大体可识别的多个肿瘤,不适用于肉眼为单个、而镜下呈多灶性分布的肿瘤[77]。对于胰腺导管腺癌的前驱病变伴浸润性癌,包括IPMN、IOPN、ITPN、MCN伴浸润性癌,T1~T3分期评估标准以浸润灶的最大径为准,而非整个病变的大小[46,132]。如果浸润灶是多灶性的,T分期评估标准是以最大浸润灶直径还是以多个浸润灶的总和为准,目前尚存争议。因此在日常工作中尽量评估详尽,对于浸润灶的多少、每个浸润灶的最大径及整体浸润灶的最大径均应进行评估,为后续临床研究留下详尽病理资料,以期达成一个更精准及规范的T分期标准。

对于新辅助治疗后胰腺癌切除标本,目前的测量方法存在一定的局限性。新辅助治疗后肿瘤细胞退缩并被纤维组织取代,特别在肿瘤细胞绝大部分退缩的情况下,肿瘤周围胰腺组织萎缩纤维化严重,增加了肉眼准确辨别肿瘤边界的难度。目前的T分期标准很难准确反映患者的预后情况[133],因此需要更加科学的手段去评估新辅助治疗后肿瘤的实际大小。有研究者利用显微镜下确认肿瘤边界,对比大体图片描绘肿瘤边界并测量肿瘤大小,从而进行T分期的评估[134],虽比肉眼直接测量更加准确,但操作过程繁杂,仍存在较大的误差。目前主要推荐以下两种方式进行肿瘤大小评估:(1)显微镜下测量整个区域内残留存活肿瘤细胞的最大线性直径,包括肿瘤细胞之间非癌组织,如间质和(或)胰腺实质或其他组织结构。(2)显微镜下测量每个肿瘤灶的最大径,并计算其总和。无论哪种测量方式,精准测量的基础都依赖于精准取材,且能否反应肿瘤的最大范围。因此本指南推荐对于新辅助治疗后胰腺手术切除标本采用大切片取材方式以最大限度展示肿瘤全貌及与周围组织关系,并在病理报告中记录显微镜下大小测量方法。

肿瘤侵犯周围组织包括侵犯胰周软组织、腹膜(包括结肠系膜、大小网膜)、胰外胆管系统,胰头部肿瘤还可侵犯十二指肠(包括壶腹部),胰体尾肿瘤还可侵犯胃、横结肠、脾脏及左侧肾上腺。肿瘤侵犯周围组织虽不影响肿瘤分期,但也应在病理报告中记录。

八、N分期如何评估?

推荐意见8:参照AJCC/UICC第8版分期系统,肿瘤直接侵犯与转移均计入阳性淋巴结个数。淋巴结检出尽可能充分,Whipple手术标本淋巴结检出量至少应达12枚。

证据质量:中  推荐强度:强

淋巴结状况是预测胰腺导管腺癌生存最有效的指标之一,基于预后数据,根据阳性淋巴结个数分为N0(无区域淋巴结阳性)、N1(1~3枚区域淋巴结阳性)和N2(4枚或更多的区域淋巴结阳性)。切除标本的所有淋巴结均应做组织学检查,单独送检的区域淋巴结应单独报告。

阳性淋巴结的检出数量已被证明与患者生存期相关,而淋巴结取样不充分可导致N分期不足[135,136,137,138,139]。国际癌症报告合作组织(International Collaboration on Cancer Reporting,ICCR)、CAP及AJCC/UICC第8版提出Whipple手术标本淋巴结检出量至少应达到12枚。基于多项研究数据,英国皇家病理学家学会认为Whipple手术标本淋巴结检出量至少应达到15枚[137,138,140,141]。新辅助治疗后的患者,检出淋巴结数目常下降,可低于15枚[142]。远端胰腺切除标本应检出最小淋巴结数量尚未形成共识,是否进行扩大淋巴结清扫目前仍有争议。

肿瘤直接侵犯淋巴结可在高达20%的胰腺癌切除标本中被发现。有研究认为,直接侵犯并不代表真正的淋巴结转移(即通过淋巴管扩散),在预后上等同于pN0[143,144,145]。也有研究表明,直接侵犯与"真正的"pN1切除的患者预后相当[146,147]。在UICC/AJCC第8版分期系统中,肿瘤直接侵犯的淋巴结也被纳入到阳性淋巴结[102,148]。另有研究认为阳性淋巴结比例(阳性淋巴结数量与检出的淋巴结总数之比)也是有效的预后指标,阳性淋巴结比例>20%与患者较低的生存率显著相关[149,150,151,152,153,154,155,156]

在AJCC/UICC TNM和日本胰腺学会(Japan Pancreas Society, JPS)系统中,肝总动脉周围的淋巴结被认为是区域淋巴结[102],而主动脉旁淋巴结并不认为是区域淋巴结,主动脉旁淋巴结阳性患者的生存率明显低于阴性患者,转移到主动脉旁淋巴结被认为是远处转移(即pM1)[157,158,159],但这尚未被采用到临床实践中。

九、M分期如何评估?

推荐意见9:无远处转移为M0,有远处转移为M1,腹膜种植或腹水阳性均诊断为M1

证据质量:中  推荐强度:强

M分期最值得注意的是腹膜种植或腹水阳性,均被诊断为M1[23,160]

十、新辅助治疗后肿瘤退缩分级(tumor regression grading,TRG)如何评估?

推荐意见10:推荐使用CAP和MD安德森癌症中心(MD Anderson Cancer Center,MDACC)评估系统对新辅助治疗后TRG进行评估。

证据质量:低  推荐强度:弱

胰腺癌新辅助治疗在改善胰腺癌患者预后中的作用越来越受到重视,在对新辅助治疗后的胰腺癌手术切除标本进行病理评估时,通常会评估新辅助治疗后TRG,以评估肿瘤对接受的新辅助治疗的敏感性,从而指导后续辅助治疗并预测患者预后。目前有多种TRG评估系统用于胰腺癌,包括最早于1992年提出的Evans系统[161]、CAP评估系统[162](基于Ryan等[163]提出的最初用于评估直肠癌新辅助治疗反应的分级系统,又称为改良的Ryan方案)、基于Chatterjee等[164,165]提出的MDACC评估系统和JPS评估系统[30]表1)。虽然目前未形成最佳的评估系统共识,但可以肯定的是完全和接近完全反应的患者预后较好[164]。CAP评估系统被NCCN指南推荐;Evans和JPS评估系统专用于胰腺导管腺癌,在日本常用。目前中国胰腺癌诊治指南[166]推荐使用CAP评估系统。MDACC评估系统与CAP评估系统类似,但采用三分类而不是四分类。以上4种TRG评估系统均为半定量,除肿瘤完全退缩评估标准相同外,其余评估肿瘤消退程度的界值和标准都不一样,因此很难将它们进行比较。

10.3760/cma.j.cn115667-20240307-00051.T001

国际常用的4种胰腺癌肿瘤退缩分级评估系统

肿瘤退缩分级评估系统 肿瘤退缩分级 定义
Evans Grade Ⅰ 无或<10%肿瘤细胞损毁
  Grade Ⅱa 10%~50%肿瘤细胞损毁
  Grade Ⅱb 50%~90%肿瘤细胞损毁
  Grade Ⅲ 极少(<10%)存活肿瘤细胞
  Grade Ⅳ 无存活肿瘤细胞
CAP Score 0 无存活肿瘤细胞
  Score 1 单个或小灶性肿瘤细胞残留
  Score 2 残留肿瘤灶伴间质纤维化
  Score 3 少数或无肿瘤退缩;大量肿瘤细胞残留
JPS Grade 1a 估计肿瘤残留率≥90%
  Grade 1b 估计肿瘤残留率≥50%,<90%
  Grade 2 估计肿瘤残留率≥10%,<50%
  Grade 3 估计肿瘤残留率<10%
  Grade 4 无存活肿瘤细胞
MDACC Score 0 无存活肿瘤细胞
  Score 1 <5%存活肿瘤细胞
  Score 2 ≥5%存活肿瘤细胞

注:CAP为美国病理学家协会;JPS为日本胰腺协会;MDACC为MD安德森癌症中心

肿瘤完全退缩、接近完全退缩、部分退缩及无退缩是新辅助治疗的重要疗效指标,但其组织学评估是否可靠一直是值得关注的问题。困难主要在于如何建立可靠的完全退缩的诊断标准及可重复的不同退缩程度的评估标准,因此广泛全面的组织取样至关重要。但是,大多数研究缺乏有关取材范围的信息;少数已发表的数据表明研究内部和研究之间存在重大差异。一项基于胰腺和周围组织完全包埋的研究表明仅2.5%的患者出现肿瘤完全退缩[167],而其他没有进行广泛取样的研究结果提示,10%~33%患者出现肿瘤完全退缩[168,169,170,171,172,173,174,175,176,177]。因此,肿瘤退缩的准确评估需要对病变组织广泛取样,特别对于肿瘤完全退缩的评估,需要对整个肿瘤床和任何相邻的肉眼可见异常的组织全取材并进行组织学检查。

十一、胰腺癌背景病变需要评估吗?

推荐意见11:需要评估胰腺癌背景病变如PanIN、IPMN、ITPN、IOPN、MCN及慢性胰腺炎。

证据质量:低  推荐强度:弱

除了关注肿瘤本身,肿瘤背景病变的认识也越来越受到重视。PanIN是胰腺导管腺癌最常见的前驱病变[178],有研究者发现,不伴有PanIN的胰腺癌患者术后存活率低[179]。若同时合并IPMN、ITPN、IOPN或MCN,也需在病理报告中标注,并明确上皮异型的程度及与胰腺癌的关系[132,180]。NCCN指南中也提出需要在病理诊断报告中标注出背景病变例如有无PanIN或慢性胰腺炎。

目前尚无针对胰腺癌病理取材及诊断报告规范指南,本工作小组结合国内外现有证据,提出5个强推荐意见和6个弱推荐意见,有利于对胰腺癌进行精准分期、生存预测和指导术后治疗,有助于提升病理报告完整性,加强病理医师与临床医师之间的沟通,同时也提高了各医院病理报告的同质化水平,因此具有较强的推广价值。

首席专家

李兆申(海军军医大学第一附属医院)

廖专(海军军医大学第一附属医院)

刘东戈(北京医院)

郑建明(海军军医大学第一附属医院)

陈杰(中国医学科学院北京协和医院)

首席方法学家

陈耀龙(兰州大学)

指南专家委员会(按姓氏笔画排名,不分先后)

王凯旋(海军军医大学第一附属医院)

左长京(海军军医大学第一附属医院)

白辰光(海军军医大学第一附属医院)

边云(海军军医大学第一附属医院)

刘艳芳(海军军医大学第一附属医院)

李兆申(海军军医大学第一附属医院)

张火俊(海军军医大学第一附属医院)

陆建平(海军军医大学第一附属医院)

邵成伟(海军军医大学第一附属医院)

金钢(海军军医大学第一附属医院)

金震东(海军军医大学第一附属医院)

郑建明(海军军医大学第一附属医院)

郑楷炼(海军军医大学第一附属医院)

经纬(海军军医大学第一附属医院)

郭世伟(海军军医大学第一附属医院)

蒋慧(海军军医大学第一附属医院)

湛先保(海军军医大学第一附属医院)

廖专(海军军医大学第一附属医院)

指南外审专家组(按姓氏笔画排名,不分先后)

王立峰(上海交通大学附属新华医院)

丛文铭(海军军医大学第三附属医院)

刘秀萍(复旦大学基础医学院病理学系)

刘改芳(河北省人民医院)

孙备(哈尔滨医科大学第一附属医院)

纪元(复旦大学附属中山医院)

李月红(河北医科大学第二医院)

李增山(空军军医大学第一附属医院)

邱雪杉(中国医科大学附属第一医院)

张祥宏(河北医科大学第二医院)

张淑倩(河北省人民医院)

张智弘(南京医科大学第一附属医院)

陈杰(中国医学科学院北京协和医院)

陈骏(南京大学医学院附属鼓楼医院)

邵成浩(海军军医大学第二附属医院)

周晓军(中国人民解放军东部战区总医院)

侯英勇(复旦大学附属中山医院)

袁菲(上海交通大学附属瑞金医院)

莱茂德(浙江大学医学院病理学与病理生理学系)

高洪文(吉林大学附属第二医院)

高鹏(山东大学齐鲁医院)

唐峰(复旦大学附属华山医院)

盛伟琪(复旦大学附属肿瘤医院)

常晓燕(中国医学科学院北京协和医院)

楼文晖(复旦大学附属中山医院)

蔚青(同济大学附属第十人民医院)

指南工作小组(按姓氏笔画排名,不分先后)

王铁功(海军军医大学第一附属医院)

方旭(海军军医大学第一附属医院)

边云(海军军医大学第一附属医院)

刘芳(海军军医大学第一附属医院)

李晶(海军军医大学第一附属医院)

杨叶琳(海军军医大学第一附属医院)

张允硕(海军军医大学第一附属医院)

蒋慧(海军军医大学第一附属医院)

执笔者

蒋慧(海军军医大学第一附属医院)

张允硕(海军军医大学第一附属医院)

杨叶琳(海军军医大学第一附属医院)

参考文献
参考文献 Gill AJ, Klimstra DS, Lam AK, et al. Tumours of the pancreas[M]. WHO Classification of Tumours Editorial Board Digestive System Tumours. Lyon, France; IARC. 2019: 295-371. Fitzgerald TL, Hickner ZJ, Schmitz M, et al. Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry[J]. Pancreas, 2008, 37(2): 134-138. DOI:10.1097/MPA.0b013e318163a329. Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020. DOI:10.1016/s0140-6736(20)30974-0. Reni M, Balzano G, Zanon S, et al. Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): a randomised, open-label, phase 2-3 trial[J]. Lancet Gastroenterol Hepatol, 2018, 3(6): 413-423. DOI:10.1016/s2468-1253(18)30081-5. Townend P, de Reuver PR, Chua TC, et al. Histopathological tumour viability after neoadjuvant chemotherapy influences survival in resected pancreatic cancer: analysis of early outcome data[J]. ANZ J Surg, 2018, 88(3): e167-e172. DOI:10.1111/ans.13897. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma[J]. N Engl J Med, 2014, 371(22): 2140-2141. DOI:10.1056/NEJMc1412266. Versteijne E, Vogel JA, Besselink MG, et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer[J]. Br J Surg, 2018, 105(8): 946-958. DOI:10.1002/bjs.10870. Versteijne E, Suker M, Groothuis K, et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the dutch randomized phase Ⅲ PREOPANC trial[J]. J Clin Oncol, 2020, 38(16): 1763-1773. DOI:10.1200/jco.19.02274. Jang JY, Han Y, Lee H, et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial[J]. Ann Surg, 2018, 268(2): 215-222. DOI:10.1097/sla.0000000000002705. Suker M, Beumer BR, Sadot E, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis[J]. Lancet Oncol, 2016, 17(6): 801-810. DOI:10.1016/s1470-2045(16)00172-8. Verbeke C, Brosens L, Campbell F, et al. Carcinoma of the exocrine pancreas histopathology reporting guide[M]. International Collaboration on Cancer Reporting. Sydney, NSW, Australia. 2020. N.Kalimuthu S, Serra S, Dhani N, et al. Regression grading in neoadjuvant treated pancreatic cancer: an interobserver study[J]. J Clin Pathol, 2017, 70(3): 237-243. DOI:10.1136/jclinpath-2016-203947. World Health Organization. WHO handbook for guideline development[M]. 2nd ed. World Health Organization, 2014. Institute of Medicine Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical practice guidelines we can trust. Washington (DC); National Academies Press (US). 2011. 陈耀龙杨克虎王小钦. 中国制订/修订临床诊疗指南的指导原则(2022版)[J]. 中华医学杂志, 2022, 102(10): 697-703. DOI:10.3760/cma.j.cn112137-20211228-02911. World Health Organization. International classification of diseases 11th revision[EB/OL]. [2018-08-17]. https://icd.who.int/browse11[J/OL]2018. Brouwers MC, Kho ME, Browman GP, et al. AGREE II: advancing guideline development, reporting and evaluation in health care[J]. CMAJ, 2010, 182(18): e839-e842. DOI:10.1503/cmaj.090449. Chen Y, Yang K, Marusic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement[J]. Ann Intern Med, 2017, 166(2): 128-132. DOI:10.7326/M16-1565. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations[J]. BMJ, 2008, 336(7650): 924-926. Tempero MA, Malafa MP, Benson Ⅲ AB, et al. Pancreatic adenocarcinoma, version 1.2023[M]. NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network. 2023. Dhall D, Shi J, Allende DS, et al. Towards a more standardized approach to pathologic reporting of pancreatoduodenectomy specimens for pancreatic ductal adenocarcinoma: cross-continental and cross-specialty survey from the pancreatobiliary pathology society grossing working group[J]. Am J Surg Pathol, 2021, 45(10): 1364-1373. DOI:10.1097/pas.0000000000001723. Adsay NV, Basturk O, Saka B, et al. Whipple made simple for surgical pathologists: orientation, dissection, and sampling of pancreaticoduodenectomy specimens for a more practical and accurate evaluation of pancreatic, distal common bile duct, and ampullary tumors[J]. Am J Surg Pathol, 2014, 38(4): 480-493. DOI:10.1097/pas.0000000000000165. Edge SB, Greene FL, Byrd DR, et al. AJCC cancer staging manual[M]. 8th ed. New York, NY: Springer, 2017. Fukuda S, Oussoultzoglou E, Bachellier P, et al. Significance of the depth of portal vein wall invasion after curative resection for pancreatic adenocarcinoma[J]. Arch Surg, 2007, 142(2): 172-179; discussion 180. DOI:10.1001/archsurg.142.2.172. Nagakawa T, Nagamori M, Futakami F, et al. Results of extensive surgery for pancreatic carcinoma[J]. Cancer, 1996, 77(4): 640-645. Nagakawa T, Sanada H, Inagaki M, et al. Long-term survivors after resection of carcinoma of the head of the pancreas: significance of histologically curative resection[J]. J Hepatobiliary Pancreat Surg, 2004, 11(6): 402-408. DOI:10.1007/s00534-004-0917-4. Verbeke CS, Menon KV. Redefining resection margin status in pancreatic cancer[J]. HPB (Oxford), 2009, 11(4): 282-289. DOI:10.1111/j.1477-2574.2009.00055.x. The Royal College of Pathologists. Minimum dataset for the histopathological reporting of pancreatic, ampulla of Vater and bile duct carcinoma[M]. Standards and minimum datasets for reporting cancers. The Royal College of Pathologists. 2002. Hruban RH, Pitman MB, Klimstra DS. Tumors of the pancreas[M]. Atlas of Tumor Pathology. Washington, D.C.; American Registry of Pathology; Armed Forces Institutes of Pathology. 2007. Japan Pancreas Society. Classification of pancreatic carcinoma[M]. 4th ed. Tokyo: Kanehara, 2017. Campbell F, Verbeke CS. Specimen Dissection and sampling[M]. Pathology of the Pancreas-A Practical Approach. London, UK; Springer-Verlag. 2013. Soer E, Brosens L, van de Vijver M, et al. Dilemmas for the pathologist in the oncologic assessment of pancreatoduodenectomy specimens : An overview of different grossing approaches and the relevance of the histopathological characteristics in the oncologic assessment of pancreatoduodenectomy specimens[J]. Virchows Arch, 2018, 472(4): 533-543. DOI:10.1007/s00428-018-2321-5. Shi J, Basturk O. Whipple grossing in the era of new staging: should we standardize?[J]. Diagnostics (Basel), 2019, 9(4):132. DOI:10.3390/diagnostics9040132. Verbeke CS. Resection margins and R1 rates in pancreatic cancer-are we there yet?[J]. Histopathology, 2008, 52(7): 787-796. DOI:10.1111/j.1365-2559.2007.02935.x. Campbell F, Cairns A, Duthie F, et al. Dataset for the histopathological reporting of carcinoma of the pancreas, ampulla of vater and common bileduct[M]. London, U.K.; The Royal College of Pathologists. 2019. Björnstedt M, Franzén L, Glaumann H, et al. Gastrointestinal pathology-pancreas and periampullary region[M]. Recommendations from the KVAST Study Group of the Swedish Society for Pathology. 2020. Verbeke CS, Gladhaug IP. Dissection of pancreatic resection specimens[J]. Surg Pathol Clin, 2016, 9(4): 523-538. DOI:10.1016/j.path.2016.05.001. Verbeke CS, Leitch D, Menon KV, et al. Redefining the R1 resection in pancreatic cancer[J]. Br J Surg, 2006, 93(10): 1232-1237. DOI:10.1002/bjs.5397. Esposito I, Kleeff J, Bergmann F, et al. Most pancreatic cancer resections are R1 resections[J]. Ann Surg Oncol, 2008, 15(6): 1651-1660. DOI:10.1245/s10434-008-9839-8. Chandrasegaram MD, Goldstein D, Simes J, et al. Meta-analysis of radical resection rates and margin assessment in pancreatic cancer [J]. Br J Surg, 2015, 102(12): 1459-1472. DOI:10.1002/bjs.9892. Ohigashi H, Ishikawa O, Sasaki Y, et al. K-ras point mutation in the nerve plexuses around the superior mesenteric artery in resectable adenocarcinoma of the pancreatic head: distribution pattern and related factors[J]. Arch Surg, 2000, 135(12): 1450-1455. DOI:10.1001/archsurg.135.12.1450. Kim J, Reber HA, Dry SM, et al. Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins[J]. Gut, 2006, 55(11): 1598-1605. DOI:10.1136/gut.2005.083063. Chatterjee D, Katz MH, Rashid A, et al. Pancreatic intraepithelial neoplasia and histological changes in non-neoplastic pancreas associated with neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma[J]. Histopathology, 2013, 63(6): 841-851. DOI:10.1111/his.12234. Verbeke C, Löhr M, Karlsson JS, et al. Pathology reporting of pancreatic cancer following neoadjuvant therapy: challenges and uncertainties[J]. Cancer Treat Rev, 2015, 41(1): 17-26. DOI:10.1016/j.ctrv.2014.11.002. Campbell F, Verbeke CS. Intraductal papillary neoplasm[M]. Pathology of the Pancreas-A Practical Approach. London, UK; Springer-Verlag. 2013. Tanaka M, Fernández-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas[J]. Pancreatology, 2012, 12(3): 183-197. DOI:10.1016/j.pan.2012.04.004. Yamaguchi K, Kanemitsu S, Hatori T, et al. Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN[J]. Pancreas, 2011, 40(4): 571-580. DOI:10.1097/MPA.0b013e318215010c. Mino-Kenudson M, Fernandez-del Castillo C, Baba Y, et al. Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological and precursor epithelial subtypes[J]. Gut, 2011, 60(12): 1712-1720. DOI:10.1136/gut.2010.232272. Nakata K, Ohuchida K, Aishima S, et al. Invasive carcinoma derived from intestinal-type intraductal papillary mucinous neoplasm is associated with minimal invasion, colloid carcinoma, and less invasive behavior, leading to a better prognosis[J]. Pancreas, 2011, 40(4): 581-587. DOI:10.1097/MPA.0b013e318214fa86. Yopp AC, Katabi N, Janakos M, et al. Invasive carcinoma arising in intraductal papillary mucinous neoplasms of the pancreas: a matched control study with conventional pancreatic ductal adenocarcinoma[J]. Ann Surg, 2011, 253(5): 968-974. DOI:10.1097/SLA.0b013e318214bcb4. Marchegiani G, Mino-Kenudson M, Ferrone CR, et al. Oncocytic-type intraductal papillary mucinous neoplasms: a unique malignant pancreatic tumor with good long-term prognosis[J]. J Am Coll Surg, 2015, 220(5): 839-844. DOI:10.1016/j.jamcollsurg.2015.01.051. Wang T, Askan G, Adsay V, et al. Intraductal oncocytic papillary neoplasms: clinical-pathologic characterization of 24 cases, with an emphasis on associated invasive carcinomas[J]. Am J Surg Pathol, 2019, 43(5): 656-661. DOI:10.1097/pas.0000000000001226. Basturk O, Adsay V, Askan G, et al. Intraductal tubulopapillary neoplasm of the pancreas: a clinicopathologic and immunohistochemical analysis of 33 cases[J]. Am J Surg Pathol, 2017, 41(3): 313-325. DOI:10.1097/pas.0000000000000782. Suda K, Hirai S, Matsumoto Y, et al. Variant of intraductal carcinoma (with scant mucin production) is of main pancreatic duct origin: a clinicopathological study of four patients[J]. Am J Gastroenterol, 1996, 91(4): 798-800. Tajiri T, Tate G, Inagaki T, et al. Intraductal tubular neoplasms of the pancreas: histogenesis and differentiation[J]. Pancreas, 2005, 30(2): 115-121. DOI:10.1097/01.mpa.0000148513.69873.4b. Yamaguchi H, Shimizu M, Ban S, et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms[J]. Am J Surg Pathol, 2009, 33(8): 1164-1172. DOI:10.1097/PAS.0b013e3181a162e5. Tannous T, Perez Rodriguez AL, Mak AW, et al. Primary clear cell carcinoma of the pancreas: a systematic review[J]. Cureus, 2021, 13(6): e15668. DOI:10.7759/cureus.15668. Ray S, Lu Z, Rajendiran S. Clear cell ductal adenocarcinoma of pancreas: a case report and review of the literature[J]. Arch Pathol Lab Med, 2004, 128(6): 693-696. DOI:10.5858/2004-128-693-ccdaop. Kanai N, Nagaki S, Tanaka T. Clear cell carcinoma of the pancreas [J]. Acta Pathol Jpn, 1987, 37(9): 1521-1526. DOI:10.1111/j.1440-1827.1987.tb02273.x. Papotti M, Cassoni P, Taraglio S, et al. Oncocytic and oncocytoid tumors of the exocrine pancreas, liver, and gastrointestinal tract[J]. Semin Diagn Pathol, 1999, 16(2): 126-134. Morinaga S, Tsumuraya M, Nakajima T, et al. Ciliated-cell adenocarcinoma of the pancreas[J]. Acta Pathol Jpn, 1986, 36(12): 1905-1910. DOI:10.1111/j.1440-1827.1986.tb02255.x. Dursun N, Feng J, Basturk O, et al. Vacuolated cell pattern of pancreatobiliary adenocarcinoma: a clinicopathological analysis of 24 cases of a poorly recognized distinctive morphologic variant important in the differential diagnosis[J]. Virchows Arch, 2010, 457(6): 643-649. DOI:10.1007/s00428-010-0978-5. Albores-Saavedra J, Simpson K, Dancer YJ, et al. Intestinal type adenocarcinoma: a previously unrecognized histologic variant of ductal carcinoma of the pancreas[J]. Ann Diagn Pathol, 2007, 11(1): 3-9. DOI:10.1016/j.anndiagpath.2006.06.008. Berho M, Blaustein A, Willis I, et al. Microglandular carcinoma of the pancreas: immunohistochemical and ultrastructural study of an unusual variant of pancreatic carcinoma that may closely resemble a neuroendocrine neoplasm[J]. Am J Clin Pathol, 1996, 105(6): 727-732. DOI:10.1093/ajcp/105.6.727. Gupta N, Krishnan PV, Muzaffar J, et al. Cystic ductal adenocarcinoma of pancreas: an unusual variant[J]. Trop Gastroenterol, 2006, 27(3): 131-133. Bagci P, Andea AA, Basturk O, et al. Large duct type invasive adenocarcinoma of the pancreas with microcystic and papillary patterns: a potential microscopic mimic of non-invasive ductal neoplasia[J]. Mod Pathol, 2012, 25(3): 439-448. DOI:10.1038/modpathol.2011.181. Kelly PJ, Shinagare S, Sainani N, et al. Cystic papillary pattern in pancreatic ductal adenocarcinoma: a heretofore undescribed morphologic pattern that mimics intraductal papillary mucinous carcinoma[J]. Am J Surg Pathol, 2012, 36(5): 696-701. DOI:10.1097/PAS.0b013e318249ce1c. Ma R, Yu YQ, Li JT, et al. Mucoepidermoid carcinoma of the pancreas: a case report and a review of literature[J]. J Res Med Sci, 2012, 17(9): 886-889. Friedman HD. Nonmucinous, glycogen-poor cystadenocarcinoma of the pancreas[J]. Arch Pathol Lab Med, 1990, 114(8): 888-891. Hua Y, Soni P, Larsen D, et al. SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma mimicking solid pseudopapillary neoplasm: a case report and review of the literature [J]. World J Gastroenterol, 2020, 26(36): 5520-5526. DOI:10.3748/wjg.v26.i36.5520. King DA, Rahalkar S, Bingham DB, et al. Pancreatic INI1-deficient undifferentiated rhabdoid carcinoma achieves complete clinical response on gemcitabine and nab-paclitaxel following immediate progression on FOLFIRINOX: a case report[J]. J Gastrointest Oncol, 2021, 12(2): 874-879. DOI:10.21037/jgo-20-478. Adsay NV, Basturk O, Bonnett M, et al. A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma[J]. Am J Surg Pathol, 2005, 29(6): 724-733. DOI:10.1097/01.pas.0000163360.40357.f1. College of American Pathologists (CAP). Protocol for the examination of specimens from patients with carcinoma of the pancreas[M]. 2021. Giulianotti PC, Boggi U, Fornaciari G, et al. Prognostic value of histological grading in ductal adenocarcinoma of the pancreas. Klöppel vs TNM grading[J]. Int J Pancreatol, 1995, 17(3): 279-289. DOI:10.1007/bf02785825. Yamada M, Sugiura T, Okamura Y, et al. Microscopic venous invasion in pancreatic cancer[J]. Ann Surg Oncol, 2018, 25(4): 1043-1051. DOI:10.1245/s10434-017-6324-2. Garcea G, Dennison AR, Ong SL, et al. Tumour characteristics predictive of survival following resection for ductal adenocarcinoma of the head of pancreas[J]. Eur J Surg Oncol, 2007, 33(7): 892-897. DOI:10.1016/j.ejso.2007.02.024. Chen JW, Bhandari M, Astill DS, et al. Predicting patient survival after pancreaticoduodenectomy for malignancy: histopathological criteria based on perineural infiltration and lymphovascular invasion[J]. HPB (Oxford), 2010, 12(2): 101-108. DOI:10.1111/j.1477-2574.2009.00140.x. Kanda M, Fujii T, Sahin TT, et al. Invasion of the splenic artery is a crucial prognostic factor in carcinoma of the body and tail of the pancreas[J]. Ann Surg, 2010, 251(3): 483-487. DOI:10.1097/SLA.0b013e3181cf9171. Partelli S, Crippa S, Barugola G, et al. Splenic artery invasion in pancreatic adenocarcinoma of the body and tail: a novel prognostic parameter for patient selection[J]. Ann Surg Oncol, 2011, 18(13): 3608-3614. DOI:10.1245/s10434-011-1769-1. Kim BH, Kim K, Chie EK, et al. Prognostic value of splenic artery invasion in patients undergoing adjuvant chemoradiotherapy after distal pancreatectomy for pancreatic adenocarcinoma[J]. Cancer Res Treat, 2015, 47(2): 274-281. DOI:10.4143/crt.2014.025. Addeo P, Velten M, Averous G, et al. Prognostic value of venous invasion in resected T3 pancreatic adenocarcinoma: depth of invasion matters[J]. Surgery, 2017, 162(2): 264-274. DOI:10.1016/j.surg.2017.03.008. Hamada Y, Nakayama Y. Aggressive venous invasion in the area of carcinoma correlates with liver metastasis as an index of metastasis for invasive ductal carcinoma of the pancreas[J]. Pancreatology, 2017, 17(6): 951-955. DOI:10.1016/j.pan.2017.08.006. Song A, Liu F, Wu L, et al. Histopathologic tumor invasion of superior mesenteric vein/ portal vein is a poor prognostic indicator in patients with pancreatic ductal adenocarcinoma: results from a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(20): 32600-32607. DOI:10.18632/oncotarget.15938. Chen HY, Wang X, Zhang H, et al. Mesenterico-portal vein invasion should be an important factor in TNM staging for pancreatic ductal adenocarcinoma: proposed modification of the 8(th) edition of the American Joint Committee on Cancer staging system[J]. World J Gastroenterol, 2019, 25(46): 6752-6766. DOI:10.3748/wjg.v25.i46.6752. Nakagohri T, Kinoshita T, Konishi M, et al. Survival benefits of portal vein resection for pancreatic cancer[J]. Am J Surg, 2003, 186(2): 149-153. DOI:10.1016/s0002-9610(03)00173-9. Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, and a standardized definition[J]. Dermatol Surg, 2009, 35(2): 214-221. DOI:10.1111/j.1524-4725.2008.34412.x. Hirai I, Kimura W, Ozawa K, et al. Perineural invasion in pancreatic cancer[J]. Pancreas, 2002, 24(1): 15-25. DOI:10.1097/00006676-200201000-00003. Zhang JF, Hua R, Sun YW, et al. Influence of perineural invasion on survival and recurrence in patients with resected pancreatic cancer[J]. Asian Pac J Cancer Prev, 2013, 14(9): 5133-5139. DOI:10.7314/apjcp.2013.14.9.5133. Schorn S, Demir IE, Haller B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma-a systematic review and meta-analysis[J]. Surg Oncol, 2017, 26(1): 105-115. DOI:10.1016/j.suronc.2017.01.007. Di Martino M, Ielpo B, de Nova JLM, et al. Lymph node ratio, perineural invasion and R1 resection as independent prognostic factors in pancreatic adenocarcinoma: a retrospective cohort study [J]. Surg Technol Int, 2020, 36: 82-88. Crippa S, Pergolini I, Javed AA, et al. Implications of perineural invasion on disease recurrence and survival after pancreatectomy for pancreatic head ductal adenocarcinoma[J]. Ann Surg, 2022, 276(2): 378-385. DOI:10.1097/sla.0000000000004464. Ozaki H, Hiraoka T, Mizumoto R, et al. The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection[J]. Surg Today, 1999, 29(1): 16-22. DOI:10.1007/bf02482964. Shimada K, Nara S, Esaki M, et al. Intrapancreatic nerve invasion as a predictor for recurrence after pancreaticoduodenectomy in patients with invasive ductal carcinoma of the pancreas[J]. Pancreas, 2011, 40(3): 464-468. DOI:10.1097/MPA.0b013e31820b5d37. Kayahara M, Nagakawa T, Konishi I, et al. Clinicopathological study of pancreatic carcinoma with particular reference to the invasion of the extrapancreatic neural plexus[J]. Int J Pancreatol, 1991, 10(2): 105-111. DOI:10.1007/bf02924113. Nagakawa T, Kayahara M, Ueno K, et al. Clinicopathological study on neural invasion to the extrapancreatic nerve plexus in pancreatic cancer[J]. Hepatogastroenterology, 1992, 39(1): 51-55. Nagakawa T, Kayahara M, Ueno K, et al. A clinicopathologic study on neural invasion in cancer of the pancreatic head[J]. Cancer, 1992, 69(4): 930-935. DOI:10.1002/1097-0142(19920215)69:4<930::aid-cncr2820690416>3.0.co;2-r. Takahashi T, Ishikura H, Kato H, et al. Intra-pancreatic, extra-tumoral perineural invasion (nex). An indicator for the presence of retroperitoneal neural plexus invasion by pancreas carcinoma[J]. Acta Pathol Jpn, 1992, 42(2): 99-103. Takahashi T, Ishikura H, Motohara T, et al. Perineural invasion by ductal adenocarcinoma of the pancreas[J]. J Surg Oncol, 1997, 65(3): 164-170. DOI:10.1002/(sici)1096-9098(199707)65:3<164::aid-jso4>3.0.co;2-4. Takahashi S, Hasebe T, Oda T, et al. Extra-tumor perineural invasion predicts postoperative development of peritoneal dissemination in pancreatic ductal adenocarcinoma[J]. Anticancer Res, 2001, 21(2b): 1407-1412. Chatterjee D, Katz MH, Rashid A, et al. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma[J]. Am J Surg Pathol, 2012, 36(3): 409-417. DOI:10.1097/PAS.0b013e31824104c5. Takahashi H, Ohigashi H, Ishikawa O, et al. Perineural invasion and lymph node involvement as indicators of surgical outcome and pattern of recurrence in the setting of preoperative gemcitabine-based chemoradiation therapy for resectable pancreatic cancer[J]. Ann Surg, 2012, 255(1): 95-102. DOI:10.1097/SLA.0b013e31823d813c. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours[M]. Eigth ed. Chichester, West Sussex, UK; Hoboken, NJ: John Wiley & Sons, Inc, 2017. Gnerlich JL, Luka SR, Deshpande AD, et al. Microscopic margins and patterns of treatment failure in resected pancreatic adenocarcinoma[J]. Arch Surg, 2012, 147(8): 753-760. DOI:10.1001/archsurg.2012.1126. Frampton AE, Gall TM, Krell J, et al. Is there a 'margin' for error in pancreatic cancer surgery?[J]. Future Oncol, 2013, 9(1): 31-34. DOI:10.2217/fon.12.175. Sierzega M, Popiela T, Kulig J, et al. The ratio of metastatic/resected lymph nodes is an independent prognostic factor in patients with node-positive pancreatic head cancer[J]. Pancreas, 2006, 33(3): 240-245. DOI:10.1097/01.mpa.0000235306.96486.2a. van Geenen RC, van Gulik TM, Offerhaus GJ, et al. Survival after pancreaticoduodenectomy for periampullary adenocarcinoma: an update[J]. Eur J Surg Oncol, 2001, 27(6): 549-557. DOI:10.1053/ejso.2001.1162. Lai CC, Wang SY, Liao CH, et al. Surgical margin status of patients with pancreatic ductal adenocarcinoma undergoing surgery with radical intent: risk factors for the survival impact of positive margins[J]. In Vivo, 2018, 32(6): 1591-1597. DOI:10.21873/invivo.11419. Moon HJ, An JY, Heo JS, et al. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma[J]. Pancreas, 2006, 32(1): 37-43. DOI:10.1097/01.mpa.0000194609.24606.4b. Crippa S, Ricci C, Guarneri G, et al. Improved survival after pancreatic re-resection of positive neck margin in pancreatic cancer patients. A systematic review and network meta-analysis [J]. Eur J Surg Oncol, 2021, 47(6): 1258-1266. DOI:10.1016/j.ejso.2021.01.001. Wittekind C, Compton CC, Greene FL, et al. TNM residual tumor classification revisited[J]. Cancer, 2002, 94(9): 2511-2516. DOI:10.1002/cncr.10492. Erdmann J, van Eijck CH. Resection margin involvement and tumour origin in pancreatic head cancer (Br J Surg 2012; 99: 1036-1049)[J]. Br J Surg, 2013, 100(2): 299. DOI:10.1002/bjs.9011. Markov P, Satoi S, Kon M. Redefining the R1 resection in patients with pancreatic ductal adenocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2016, 23(9): 523-532. DOI:10.1002/jhbp.374. Menon KV, Gomez D, Smith AM, et al. Impact of margin status on survival following pancreatoduodenectomy for cancer: the Leeds Pathology Protocol (LEEPP)[J]. HPB (Oxford), 2009, 11(1): 18-24. DOI:10.1111/j.1477-2574.2008.00013.x. Campbell F, Smith RA, Whelan P, et al. Classification of R1 resections for pancreatic cancer: the prognostic relevance of tumour involvement within 1 mm of a resection margin[J]. Histopathology, 2009, 55(3): 277-283. DOI:10.1111/j.1365-2559.2009.03376.x. Wittekind C, Compton C, Quirke P, et al. A uniform residual tumor (R) classification: integration of the R classification and the circumferential margin status[J]. Cancer, 2009, 115(15): 3483-3488. DOI:10.1002/cncr.24320. Leonhardt CS, Niesen W, Kalkum E, et al. Prognostic relevance of the revised R status definition in pancreatic cancer: meta-analysis [J]. BJS Open, 2022, 6(2): zrac010. DOI:10.1093/bjsopen/zrac010. Hartwig W, Werner J, Buchler MW. Prognosis of resected pancreatic cancer: is the refined resection margin status dispensable?[J]. Langenbecks Arch Surg, 2012, 397(6): 859-860. DOI: 10.1007/s00423-012-0968-y. Weyhe D, Obonyo D, Uslar VN, et al. Predictive factors for long-term survival after surgery for pancreatic ductal adenocarcinoma: Making a case for standardized reporting of the resection margin using certified cancer center data[J]. PLoS One, 2021, 16(3): e0248633. DOI:10.1371/journal.pone.0248633. Verbeke CS, Knapp J, Gladhaug IP. Tumour growth is more dispersed in pancreatic head cancers than in rectal cancer: implications for resection margin assessment[J]. Histopathology, 2011, 59(6): 1111-1121. DOI:10.1111/j.1365-2559.2011.04056.x. Chang DK, Johns AL, Merrett ND, et al. Margin clearance and outcome in resected pancreatic cancer[J]. J Clin Oncol, 2009, 27(17): 2855-2862. DOI:10.1200/JCO.2008.20.5104. Jamieson NB, Chan NI, Foulis AK, et al. The prognostic influence of resection margin clearance following pancreaticoduodenectomy for pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg, 2013, 17(3): 511-521. DOI:10.1007/s11605-012-2131-z. Maksymov V, Hogan M, Khalifa MA. An anatomical-based mapping analysis of the pancreaticoduodenectomy retroperitoneal margin highlights the urgent need for standardized assessment[J]. HPB (Oxford), 2013, 15(3): 218-223. DOI:10.1111/j.1477-2574.2012.00561.x. Osipov A, Nissen N, Rutgers J, et al. Redefining the positive margin in pancreatic cancer: impact on patterns of failure, long-term survival and adjuvant therapy[J]. Ann Surg Oncol, 2017, 24(12): 3674-3682. DOI:10.1245/s10434-017-6076-z. Gebauer F, Tachezy M, Vashist YK, et al. Resection margin clearance in pancreatic cancer after implementation of the Leeds Pathology Protocol (LEEPP): clinically relevant or just academic?[J]. World J Surg, 2015, 39(2): 493-499. DOI:10.1007/s00268-014-2808-4. Nix GA, Dubbelman C, Wilson JH, et al. Prognostic implications of tumor diameter in carcinoma of the head of the pancreas[J]. Cancer, 1991, 67(2): 529-535. DOI:10.1002/1097-0142(19910115)67:2<529::aid-cncr2820670235>3.0.co;2-3. The Royal College of Pathologists of Australasia (RCPA). Cancer of the exocrine pancreas, ampulla of vater and distal common bile duct[M]. Structured Reporting Protocol. 2020. Wang H, Chetty R, Hosseini M, et al. Pathologic examination of pancreatic specimens resected for treated pancreatic ductal adenocarcinoma: recommendations from the pancreatobiliary pathology society[J]. Am J Surg Pathol, 2022, 46(6): 754-764. DOI:10.1097/pas.0000000000001853. Lim JE, Chien MW, Earle CC. Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients[J]. Ann Surg, 2003, 237(1): 74-85. DOI:10.1097/00000658-200301000-00011. Matsumoto G, Muta M, Tsuruta K, et al. Tumor size significantly correlates with postoperative liver metastases and COX-2 expression in patients with resectable pancreatic cancer[J]. Pancreatology, 2007, 7(2-3): 167-173. DOI:10.1159/000104241. Saka B, Balci S, Basturk O, et al. Pancreatic ductal adenocarcinoma is spread to the peripancreatic soft tissue in the majority of resected cases, rendering the AJCC T-stage protocol (7th edition) inapplicable and insignificant: a size-based staging system (pT1:≤2, pT2:>2-≤4, pT3:>4 cm) is more valid and clinically relevant[J]. Ann Surg Oncol, 2016, 23(6): 2010-2018. DOI:10.1245/s10434-016-5093-7. Allen PJ, Kuk D, Castillo CF, et al. Multi-institutional validation study of the American Joint Commission on Cancer (8th edition) changes for T and N staging in patients with pancreatic adenocarcinoma[J]. Ann Surg, 2017, 265(1): 185-191. DOI:10.1097/sla.0000000000001763. Adsay V, Mino-Kenudson M, Furukawa T, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of verona consensus meeting[J]. Ann Surg, 2016, 263(1): 162-177. DOI:10.1097/sla.0000000000001173. Rowan DJ, Hartley CP, Aldakkak M, et al. Gross tumor size using the AJCC 8th ed. T staging criteria does not provide prognostic stratification for neoadjuvant treated pancreatic ductal adenocarcinoma[J]. Ann Diagn Pathol, 2020, 46:151485. DOI:10.1016/j.anndiagpath.2020.151485. Zhang ML, Kem M, Rodrigues C, et al. Microscopic size measurements in post-neoadjuvant therapy resections of pancreatic ductal adenocarcinoma (PDAC) predict patient outcomes[J]. Histopathology, 2020, 77(1): 144-155. DOI:10.1111/his.14067. Huebner M, Kendrick M, Reid-Lombardo KM, et al. Number of lymph nodes evaluated: prognostic value in pancreatic adenocarcinoma[J]. J Gastrointest Surg, 2012, 16(5): 920-926. DOI:10.1007/s11605-012-1853-2. Ashfaq A, Pockaj BA, Gray RJ, et al. Nodal counts and lymph node ratio impact survival after distal pancreatectomy for pancreatic adenocarcinoma[J]. J Gastrointest Surg, 2014, 18(11): 1929-1935. DOI:10.1007/s11605-014-2566-5. Tomlinson JS, Jain S, Bentrem DJ, et al. Accuracy of staging node-negative pancreas cancer: a potential quality measure[J]. Arch Surg, 2007, 142(8): 767-723; discussion 773-764. DOI:10.1001/archsurg.142.8.767. Schwarz RE, Smith DD. Extent of lymph node retrieval and pancreatic cancer survival: information from a large US population database[J]. Ann Surg Oncol, 2006, 13(9): 1189-1200. DOI:10.1245/s10434-006-9016-x. Slidell MB, Chang DC, Cameron JL, et al. Impact of total lymph node count and lymph node ratio on staging and survival after pancreatectomy for pancreatic adenocarcinoma: a large, population-based analysis[J]. Ann Surg Oncol, 2008, 15(1): 165-174. DOI:10.1245/s10434-007-9587-1. Valsangkar NP, Bush DM, Michaelson JS, et al. N0/N1, PNL, or LNR? The effect of lymph node number on accurate survival prediction in pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg, 2013, 17(2): 257-266. DOI:10.1007/s11605-012-1974-7. Han SS, Jang JY, Kim SW, et al. Analysis of long-term survivors after surgical resection for pancreatic cancer[J]. Pancreas, 2006, 32(3): 271-275. DOI:10.1097/01.mpa.0000202953.87740.93. Barrak D, Villano AM, Moslim MA, et al. Total neoadjuvant treatment for pancreatic ductal adenocarcinoma is associated with limited lymph node yield but improved ratio[J]. J Surg Res, 2022, 280: 543-550. DOI:10.1016/j.jss.2022.08.002. Pai RK, Beck AH, Mitchem J, et al. Pattern of lymph node involvement and prognosis in pancreatic adenocarcinoma: direct lymph node invasion has similar survival to node-negative disease [J]. Am J Surg Pathol, 2011, 35(2): 228-234. DOI:10.1097/PAS.0b013e318206c37a. Byun Y, Lee KB, Jang JY, et al. Peritumoral lymph nodes in pancreatic cancer revisited; is it truly equivalent to lymph node metastasis?[J]. J Hepatobiliary Pancreat Sci, 2021, 28(10): 893-901. DOI:10.1002/jhbp.940. Speichinger F, Dragomir MP, Schallenberg S, et al. Rethinking the TNM classification regarding direct lymph node invasion in pancreatic ductal adenocarcinoma[J]. Cancers (Basel), 2021, 14(1): 201.DOI:10.3390/cancers14010201. Buc E, Couvelard A, Kwiatkowski F, et al. Adenocarcinoma of the pancreas: Does prognosis depend on mode of lymph node invasion? [J]. Eur J Surg Oncol, 2014, 40(11): 1578-1585. DOI:10.1016/j.ejso.2014.04.012. Konstantinidis IT, Deshpande V, Zheng H, et al. Does the mechanism of lymph node invasion affect survival in patients with pancreatic ductal adenocarcinoma?[J]. J Gastrointest Surg, 2010, 14(2): 261-267. DOI:10.1007/s11605-009-1096-z. Pawlik TM, Gleisner AL, Cameron JL, et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer[J]. Surgery, 2007, 141(5): 610-618. DOI:10.1016/j.surg.2006.12.013. Elshaer M, Gravante G, Kosmin M, et al. A systematic review of the prognostic value of lymph node ratio, number of positive nodes and total nodes examined in pancreatic ductal adenocarcinoma[J]. Ann R Coll Surg Engl, 2017, 99(2): 101-106. DOI:10.1308/rcsann.2016.0340. Mitsunaga S, Hasebe T, Iwasaki M, et al. Important prognostic histological parameters for patients with invasive ductal carcinoma of the pancreas[J]. Cancer Sci, 2005, 96(12): 858-865. DOI:10.1111/j.1349-7006.2005.00128.x. Wentz SC, Zhao ZG, Shyr Y, et al. Lymph node ratio and preoperative CA19-9 levels predict overall survival and recurrence-free survival in patients with resected pancreatic adenocarcinoma[J]. World J Gastrointest Oncol, 2012, 4(10): 207-215. DOI:10.4251/wjgo.v4.i10.207. Shamseddine AI, Mukherji D, Melki C, et al. Lymph node ratio is an independent prognostic factor after resection of periampullary malignancies: data from a tertiary referral center in the middle East [J]. Am J Clin Oncol, 2014, 37(1): 13-18. DOI:10.1097/COC.0b013e31826b9c74. Riediger H, Keck T, Wellner U, et al. The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer[J]. J Gastrointest Surg, 2009, 13(7): 1337-1344. DOI:10.1007/s11605-009-0919-2. Robinson SM, Rahman A, Haugk B, et al. Metastatic lymph node ratio as an important prognostic factor in pancreatic ductal adenocarcinoma[J]. Eur J Surg Oncol, 2012, 38(4): 333-339. DOI:10.1016/j.ejso.2011.12.020. Yamamoto Y, Ikoma H, Morimura R, et al. The clinical impact of the lymph node ratio as a prognostic factor after resection of pancreatic cancer[J]. Anticancer Res, 2014, 34(5): 2389-2394. Berger AC, Watson JC, Ross EA, et al. The metastatic/examined lymph node ratio is an important prognostic factor after pancreaticoduodenectomy for pancreatic adenocarcinoma[J]. Am Surg, 2004, 70(3): 235-240; discussion 240. Schwarz L, Lupinacci RM, Svrcek M, et al. Para-aortic lymph node sampling in pancreatic head adenocarcinoma[J]. Br J Surg, 2014, 101(5): 530-538. DOI:10.1002/bjs.9444. Paiella S, Malleo G, Maggino L, et al. Pancreatectomy with para-aortic lymph node dissection for pancreatic head adenocarcinoma: pattern of nodal metastasis spread and analysis of prognostic factors[J]. J Gastrointest Surg, 2015, 19(9): 1610-1620. DOI:10.1007/s11605-015-2882-4. Doi R, Kami K, Ito D, et al. Prognostic implication of para-aortic lymph node metastasis in resectable pancreatic cancer[J]. World J Surg, 2007, 31(1): 147-154. DOI:10.1007/s00268-005-0730-5. Wittekind C, Greene FL, Hutter RVP, et al. TNM supplement: a commentary on uniform use[M]. 3rd ed. New York, NY: Wiley-Liss, 2003. Evans DB, Rich TA, Byrd DR, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas[J]. Arch Surg, 1992, 127(11): 1335-1339. DOI:10.1001/archsurg.1992.01420110083017. Washington MK, Berlin J, Branton P, et al. Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum[J]. Arch Pathol Lab Med, 2009, 133(10): 1539-1551. DOI:10.5858/133.10.1539. Ryan R, Gibbons D, Hyland JM, et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Histopathology, 2005, 47(2): 141-146. DOI:10.1111/j.1365-2559.2005.02176.x. Chatterjee D, Katz MH, Rashid A, et al. Histologic grading of the extent of residual carcinoma following neoadjuvant chemoradiation in pancreatic ductal adenocarcinoma: a predictor for patient outcome[J]. Cancer, 2012, 118(12): 3182-3190. DOI:10.1002/cncr.26651. Chatterjee D, Katz MH, Foo WC, et al. Prognostic significance of new AJCC tumor stage in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant therapy[J]. Am J Surg Pathol, 2017, 41(8): 1097-1104. DOI:10.1097/pas.0000000000000887. 中华医学会外科学分会胰腺外科学组. 中国胰腺癌诊治指南(2021)[J]. 中华外科杂志, 2021, 59(7): 561-577. DOI:10.3760/cma.j.cn112139-20210416-00171 Zhao Q, Rashid A, Gong Y, et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis[J]. Ann Diagn Pathol, 2012, 16(1): 29-37. DOI:10.1016/j.anndiagpath.2011.08.005. Strobel O, Berens V, Hinz U, et al. Resection after neoadjuvant therapy for locally advanced, "unresectable" pancreatic cancer[J]. Surgery, 2012, 152(3 Suppl 1): S33-S42. DOI:10.1016/j.surg.2012.05.029. Kang CM, Chung YE, Park JY, et al. Potential contribution of preoperative neoadjuvant concurrent chemoradiation therapy on margin-negative resection in borderline resectable pancreatic cancer[J]. J Gastrointest Surg, 2012, 16(3): 509-517. DOI:10.1007/s11605-011-1784-3. Denost Q, Laurent C, Adam JP, et al. Pancreaticoduodenectomy following chemoradiotherapy for locally advanced adenocarcinoma of the pancreatic head[J]. HPB (Oxford), 2013, 15(9): 716-723. DOI:10.1111/hpb.12039. Heinrich S, Schäfer M, Weber A, et al. Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase Ⅱ trial[J]. Ann Surg, 2008, 248(6): 1014-1022. DOI:10.1097/SLA.0b013e318190a6da. Heinrich S, Pestalozzi BC, Schäfer M, et al. Prospective phase Ⅱ trial of neoadjuvant chemotherapy with gemcitabine and cisplatin for resectable adenocarcinoma of the pancreatic head[J]. J Clin Oncol, 2008, 26(15): 2526-2531. DOI:10.1200/jco.2007.15.5556. Turrini O, Viret F, Moureau-Zabotto L, et al. Neoadjuvant chemoradiation and pancreaticoduodenectomy for initially locally advanced head pancreatic adenocarcinoma[J]. Eur J Surg Oncol, 2009, 35(12): 1306-1311. DOI:10.1016/j.ejso.2009.06.005. Turrini O, Ychou M, Moureau-Zabotto L, et al. Neoadjuvant docetaxel-based chemoradiation for resectable adenocarcinoma of the pancreas: New neoadjuvant regimen was safe and provided an interesting pathologic response[J]. Eur J Surg Oncol, 2010, 36(10): 987-992. DOI:10.1016/j.ejso.2010.07.003. Calvo FA, Matute R, García-Sabrido JL, et al. Neoadjuvant chemoradiation with tegafur in cancer of the pancreas: initial analysis of clinical tolerance and outcome[J]. Am J Clin Oncol, 2004, 27(4): 343-349. DOI:10.1097/01.coc.0000071462.12769.35. Desai SP, Ben-Josef E, Normolle DP, et al. Phase I study of oxaliplatin, full-dose gemcitabine, and concurrent radiation therapy in pancreatic cancer[J]. J Clin Oncol, 2007, 25(29): 4587-4592. DOI:10.1200/jco.2007.12.0592. Gillen S, Schuster T, Meyer Zum Büschenfelde C, et al. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages[J]. PLoS Med, 2010, 7(4): e1000267. DOI:10.1371/journal.pmed.1000267. Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions[J]. Am J Surg Pathol, 2001, 25(5): 579-586. DOI:10.1097/00000478-200105000-00003. Hassid BG, Lucas AL, Salomao M, et al. Absence of pancreatic intraepithelial neoplasia predicts poor survival after resection of pancreatic cancer[J]. Pancreas, 2014, 43(7): 1073-1077. DOI:10.1097/mpa.0000000000000161. Basturk O, Hong SM, Wood LD, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas[J]. Am J Surg Pathol, 2015, 39(12): 1730-1741. DOI:10.1097/pas.0000000000000533.